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Basic Idea
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CONSTRAInt

Random portfolios are intimately tied to constraints.

The idea of random portfolios is that we are sampling from the set of 
portfolios that satisfy all of the constraints.

It may be the case that whenever there are portfolio constraints that 
random portfolios can be of use somehow.
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Constrained weights
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This is a sketch of the situation in a three asset case.  We want to 
sample from the orange area.

There are two things wrong with the picture:

1) All the lines are straight, meaning there are only linear constraints.  
Constraints are not always linear.

2) The picture implies a continuous space.  Real portfolios are discrete.  
You can’t buy pi shares of IBM.
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Constrained weights
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Because of the discreteness, we are really on a lattice like the red dots.

I learned at (the infamous) Jak’s that this picture is a Rorschach test.  
There are those who see a coffin and those who don’t.
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Statistical Connections

Sometimes similar to statistical 
bootstrap

Sometimes equivalent to random 
permutation test

We’ll see random portfolios used both in the spirit of the bootstrap and 
in the spirit of random permutation tests.
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Random Portfolios: History

Goes back at least to Chicago 1965
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Applications
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Applications

Performance Measurement
Testing Trading Strategies
Evaluating Constraints
Validating Risk Models

…

Performance measurement and testing trading strategies are 
conceptually similar except one is ex post and the other is ex ante.  The 
use of random portfolios differs markedly in the two tasks, however.

Random portfolios can be used to validate risk models.  The receiver of 
a model can send portfolios through the model that have characteristics 
similar to portfolios the receiver holds.  The creator of the model can 
look for weak spots in the model.

There is certain to be a lot more applications that we haven’t yet 
thought of.
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Performance Measurement

Benchmarks

Peer Groups

Random Portfolios
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Benchmark Measurement

One-sample t-test on time series of 
difference of returns

We have a time series of differences, but we ignore the time element of 
the data.

The key problem with this technique is that it takes a very long time to 
know if the fund is good or not.
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Power with 3 Years Quarterly

Info ratio 5% sig. 1% sig.
0.5 20.3%             6.0%
1.0 49.0% 21.0%

If population is 90% IR=0, 10% IR=1, 
almost half of selected will be zero skill

Focus on the 5% significance test and an information ratio of 1. We 
declare less than half of these very good funds to have skill after three 
years.  Meanwhile we are letting through 5% of the funds that have zero 
skill.

Consider the case where we have 1000 funds: 900 have zero skill and 
the remaining 100 have information ratio 1. With our test we expect to 
declare 49 of the skilled funds to have skill. We also expect to declare 
45 of the zero skill funds to have skill.
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Power with 10 Years Quarterly

Info ratio 5% sig. 1% sig.
0.5 46.5%            21.2%
1.0 92.9%           76.6%

With 10 years of data the results for information ratio 1 have become 
reasonable.  But how many funds are the same fund a decade later?

Results for the more likely information ratio one-half are still not good 
even after 10 years.

And these numbers are highly optimistic.
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Model for Power Statistics

Normal Distribution

Constant Outperformance

The power statistics were created with a model.  Models are wrong.

I assumed a normal distribution.  Returns are not normal.

I redid the simulations using a t-distribution.  The power was the same.  
That was a surprise to me.

The other key assumption was that outperformance is constant through 
time.  That is not true, and not true in a very significant fashion.

I considered simulating the power statistics with varying 
outperformance, but I don’t know how to parameterize that in a realistic 
manner.
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This plot is of a set of 100 funds that track the S&P 500.  Something is 
not constant through time in this plot – either the IQ of the fund 
managers or the ease of outperforming the benchmark.

I maintain that assuming non-constant outperformance is the more 
realistic possibility.  Especially since we know a mechanism to explain 
it: if the assets with the biggest weights in the benchmark happen to do 
relatively well, then the benchmark will be hard to beat.
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In case you doubt me, here is the same plot with 95% confidence 
intervals that indicate there really are differences.
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Peer Groups

Assemble a cohort of “similar” funds

Report the percentile of our fund 
within the cohort for one time period

What does that mean?

Note that “similar” is in quotation marks.  “similar” could be a 
conference all on its own.  For a lot of hedge funds there are no 
reasonable peers at all.

Also note that we are using only one time period now – that’s progress.

If we don’t think too hard, then we think we know what the percentile 
means.  We don’t.
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The vertical lines represent different funds.  The x-axis is returns.

We only ever see skill plus noise (the top of the plot).  The peer group 
technology wants the ordering of skill plus noise to be the same as the 
ordering of skill.  Like the plot here.

Pure fantasy.



20

We’re going to get something more like this.  Actually I suspect that 
this is probably about as good as it gets.  My guess is that usually it is 
much worse than this.

Consider the possibility of all the funds having the same skill – maybe 
it is zero skill, maybe it is a lot of skill.  If they all have the same skill, 
then the percentile is the percentile of luck.

There is no way for us to tell from the percentiles whether they all have 
the same skill or not.



21

Perfect Performance Measurement

Look at all possible portfolios that 
the manager might have held

Take the return of each of these 
portfolios over the time period

Compare actual return to the 
distribution from all possibilities

Let’s take a detour and think about perfect performance measurement.
What would this look like?

Fund managers have a cloud of portfolios that they MIGHT hold, and 
from that cloud they pick one.  So we want to look at the distribution of 
returns from the cloud and see where the actual portfolio lies in that 
distribution.
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Some Caveats

Should account for implicit as well as 
explicit constraints

Return need not be the measure

Trading is allowed

Fund managers may have implicit constraints (such as growth-oriented) 
as well as explicit constraints.  We should take the implicit constraints 
into account in addition to the explicit constraints.

I have talked of returns as the measure of performance.  You can use 
whatever measure you like: risk-adjusted returns or whatever.  For 
simplicity I will continue to just say “returns”.

When describing what fund managers do, I said they pick one portfolio 
out of the cloud.  That implies that they do no trading throughout the 
period of interest.  Fund managers do trade, so really we have a path 
through the cloud, not a single point.  The point is easier to visualize, 
but the path doesn’t complicate the analysis any.
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Perfect Performance Measurement

Number of possible portfolios is finite 
but astronomical

Perfection is hardly ever achievable.

We are not going to be able to deal with the whole cloud of portfolios 
that the fund manager might hold.  The field of statistics says that 
taking a random sample is going to be practical and adequate in such a 
case.  That is, we want to generate random portfolios with the 
constraints of the fund.
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Random Portfolio Measurement

Take a random sample from the set of 
all portfolios that might have been

Fraction of random portfolios with a 
larger return than the fund is a p-value

Null Hypothesis is zero skill

We can do a statistical hypothesis test (a la random permutation test) 
where the null hypothesis is that the fund exhibits zero skill. If the fund 
performs well enough relative to the random portfolios, then we may be 
in a position to declare that it exhibited skill during the period.

Alternatively if the fund performed quite poorly, we may declare that it 
exhibited negative skill for the period.
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Now that we know how to really do performance measurement we can
look at the other two methods in the new light.

But first, let’s compare random portfolios to the matched portfolios that 
David Kane talked about in his presentation.

The idea of matched portfolios is that you make alternative portfolios 
look like the portfolio under question in as many respects as possible 
except the aspect that is supposedly adding skill.

David’s example was of a system that picks stocks.  The matching 
portfolios pick stocks that the system doesn’t think are good, but 
otherwise tries to make the portfolios similar.

Use random portfolios when you know or can guess constraints.  Use 
matching portfolios when there are no (or vague) constraints.
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Peer Groups

Superficially like random portfolios

Comparing against “random”
portfolios of unknown skill

Tension between lots of peers for 
power, few peers for similarity

Peer groups look a lot like random portfolios: both use a single time 
period, both compare the fund of interest to a number of alternative 
portfolios.

The key difference is that we don’t know the skill level of the peers.  
We do know the skill level of the random portfolios – it is zero skill.

With peer groups we want a lot of peers in order to get more precision 
with the percentile.  On the other hand we want only a few peers
because we want only the most similar funds.

There is no such problem with random portfolios.  We can generate as 
many as we like.
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Benchmark Measurement

Testing against 1 “random” portfolio

Saying that we are comparing with one portfolio is actually not quite 
right.  We are comparing at different time points, so the more accurate 
analogy is that the number of alternative portfolios is the number of 
time periods used.  The composition of the alternative portfolios is 
highly correlated across time. 

Some people might not be so pleased with the idea that the benchmark 
is random.  I’m thinking of those who are keen on the idea of the 
market portfolio.

The next slide should be enough to convince you that the benchmark is 
random.
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Benchmark Measurement

Testing against 1 “random” portfolio

Benchmark may not satisfy 
constraints

The benchmark is usually outside the explicit constraints of the fund.

Even if it obeys the explicit constraints, it will be outside the political 
constraints for the fund.  A fund manager is not going to please clients 
by charging them a fee to hold a portfolio that the client could buy 
essentially for free.

Since the benchmark violates constraints, the comparison is unfair.  
We’re not sure to whom it is unfair in any one period ex ante.
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But wait there’s more …
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Sometimes we know all or some of the positions of the portfolio at the 
start of the time period.  This is information that neither benchmarks 
nor peer groups can take advantage of.  But random portfolios can use 
that information.

The yellow line is the distribution of returns over a calendar year under 
a  certain set of constraints.  The red line is the distribution under the 
same set of constraints, plus it is starting at a certain portfolio and has 
slightly over 200% turnover (buys plus sells) throughout the year.
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Upper tail probabilities

Return uncond cond
30% .52 .19
31%                       .43 .10
32% .35 .06
33% .28 .03
35% .16 .004
40% .03 0

We can see that there is a big advantage in this case for the inference of 
skill.  Unconditionally we need to see a 40% return over the year in 
order to get a 3% p-value.  Conditional on the starting portfolio, we 
only need to see a 33% return to get the 3% p-value.
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Constraints

Why do we impose constraints?

Insurance

What protection are we buying?

What price is the premium?

We turn now to evaluating constraints.

The reason we impose constraints is so that the portfolio won’t do 
anything too stupid.  That is, we are buying insurance.
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FTSE Example

FTSE 350 Data
10,000 portfolios generated for each 

set of constraints
Returns: 2006 Jan 01 – 2006 June 01
Long-only
90 – 100 assets in portfolio
Nested set of linear constraints

The key bit of this slide is that we have a nested set of constraints.
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FTSE Linear Constraints
Large cap versus Mid cap

10% - 30%         70% - 90%
13% - 27%         73% - 87%
17% - 23%         77% - 83%

High yield versus Low yield
50% - 70%          30% - 50%
53% - 67%           33% - 47%
57% - 63%           37% - 43%
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FTSE Linear Constraints

5 Sectors
10% - 30%
13% - 27%
17% - 23%
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FTSE Return Distributions

When we constrain more, we expect to be giving up some of the up-
side to protect against the down-side.

In this case we get just the opposite.

Quite a puzzling result.  One idea is that we are constraining into a high 
volatility region.



38

FTSE Volatility Distributions

It does seem to be that we are constraining into a high volatility region.

The distributions here are based on the exact same random portfolios as 
last slide.  The only difference is that we are looking at volatility 
instead of returns.

An idea for something to do is to constrain volatility to be no more than 
12% -- a significant constraint but not egregious.
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FTSE Return Distributions: 
Constrained Volatility (at most 12%)

Now we constrain away some of those nasty positive returns.  And oh, 
by the way, we still have a wider distribution when we constrain more.

I’m not sure how common perverse examples like this are.  But I’ll be 
surprised if we aren’t often surprised by what constraints are doing 
once we start looking.
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Theory
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Pat’s Conjecture

Random portfolios are the most 
powerful (practical) method of 
performance measurement

If you find the conjecture not to be true, I certainly want to hear about 
that.
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A Theoretical Project

Formal setting that justifies “perfect 
performance measurement” claim

The theoretical task is to justify the “perfect performance 
measurement” claim that I made earlier (without any justification).
Random portfolios should be thrown in as the practical way of actually 
getting the measurement.
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Interlude: Generating Random 
Portfolios

Rejection method
How many billion years do you have?

Linear polytope methods
Often do not apply

Random search technique

New methods are possible

The rejection method is often a handy way of generating random 
variables.  It is going to be unworkable for random portfolios in all but 
the most trivial of cases.

(A linear polytope is the shape you get when you only have linear 
constraints – tetrahedra, cubes, dodecahedra are examples in 3-space.)  
People are working on random generation within linear polytopes, but 
this is not generally adequate in practice.  We just saw an example of a 
volatility (quadratic) constraint, and we have used integer constraints on 
the number of names in portfolios.

Another way of generating random portfolios in a case where an 
optimization is being done is to permute the expected returns randomly 
and do the optimization.  (You will want to pay attention to the standard 
errors of the expected returns.)  This method is cheap to implement but 
expensive in execution time.

It makes sense to me to look for new methods of generation.
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Random Search Technique

Create an objective function
Penalize for broken constraints
Zero when all constraints satisfied

Minimize the objective
Start at a totally random portfolio
Make random moves towards the goal

The method I use to generate random portfolios is a random search 
technique.  We create a function that is zero when all the constraints are 
satisfied and positive elsewhere.

We then minimize that to get one random portfolio.
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My image of this is of a volcanic crater with a lake in it.

We start at a random spot inside the crater.  We then start kicking a 
rock downhill.  Where it splashes into the lake is our random portfolio.

USGS image.
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What Could Be Wrong?

We stop kicking when we get to the 
lake
High probability of being close to a 
binding constraint

For practitioners, the answer is that nothing at all can go wrong – just 
use random portfolios without question.

For the theoreticians the answer is that we stop kicking the rock once 
we get to the lake, so we are likely to be close to shore.  We are likely 
to be close to at least one binding constraint.
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Typical Non-uniformity

Here is a sketch of that situation.  The random portfolios are likely to be 
clustered near the surface of the feasible* region and sparse in the 
interior.

* “feasible” means feasible to be one of the selected portfolios -- that is,  
satisfying all the constraints.
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A Fix (Sort of)

Continue kicking once in the lake

A way to get a more uniform distribution is to skip the rock some 
number of times across the lake.  The 100th splash is likely to be farther 
from shore than the original splash.

I haven’t yet implemented this, but it is on my to-do list.
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Measuring Non-Uniformity

Easy if there are only a few feasible 
portfolios

Hard if there are more feasible 
portfolios than protons in the universe

A great research opportunity

This brings up the question of how do we know if we are close to
uniform or not.

If there are 10 feasible portfolios, then generate 1000 random portfolios 
and count to see that each one gets hit just about 100 times.

It gets harder from there.  But some bright young thing can probably 
make progress on the problem.
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Is Uniform Right?

Probably not

Fund managers tend to be tight on 
some constraints

Optimal distribution will depend on 
the application

The uniform distribution is no doubt the “right” distribution for 
theoreticians.  In practice uniform is probably not the right distribution.

Fund managers think they have constraints.  They are often tight on 
some of the constraints.  If they weren’t, then they wouldn’t think that 
they had constraints.  Hence the fund manager distribution is likely to 
look a lot like the naïve random search distribution.

Also consider that in any time period the best portfolio is going to be 
outside the constraints of a fund with (basically) probability 1.  In this 
light the job of the fund manager is to select which constraints to be 
tight on.
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In summary random portfolios are a wide open field both for theory and 
for practice.  We’ve seen a few ideas for theoretical work.  Random 
portfolios can be thought of as a sort of statistical bootstrap which has 
generated hundreds of statistical theory papers.

In practice we know of several quite important applications of random 
portfolios, and there are roughly half a zillion still to be found.

There was a question from the floor about the connection between
random portfolios and the resampled efficient frontier.  Assuming there 
are no expected return or variance constraints, then all of the resampled
portfolios will satisfy the constraints of the problem.  That is, they 
satisfy the constraints just like random portfolios.  But the resampled
portfolios are in a corner of the feasible region because of the
optimization they go through.


