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Summary

Motivation

Initial impulse: Ajay Shah, long time R-help and R-SIG-Finance
contributor, contacts Achim Zeileis, strucchange package maintainer.

Date: Thu, 28 Jul 2005 21:57:10 +0530

From: Ajay Narottam Shah <ajayshah@mayin.org>

To: Achim Zeileis <Achim.Zeileis@wu-wien.ac.at>

Subject: Wonder if this fits (structural breaks work in

a currency regime context)

. . .

The issues are like this. Many central banks SAY that a

currency regime is X. But they routinely lie. Economists

would like to know the true currency regime. And, we

would like to know the date when something changed.

. . .

Motivation

Of particular interest: China gave up on a fixed exchange rate to the
US dollar (USD) on 2005-07-21. The People’s Bank of China
announced that the Chinese yuan (CNY) would no longer be pegged to
the USD but to a basket of currencies with greater flexibility.

Collaboration: Ajay Shah, Ila Patnaik, and Achim Zeileis start to
investigate the question What is the new Chinese exchange rate
regime?

First step: Collect foreign exchange (FX) rates for various currencies
for three months up to 2005-10-31.
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Exchange rate regimes

The FX regime of a country determines how it manages its currency wrt
foreign currencies. Broadly, it can be

floating: currency is allowed to fluctuate based on market forces,

pegged: currency has limited flexibility when compared with a
basket of currencies or a single currency,

fixed: direct convertibility to another currency.

Problem: The de facto and de jure FX regime in operation in a country
often differ. (≈ politically correct version of Ajay’s original e-mail)

⇒ Data-driven classification of FX regimes

Exchange rate regression

The workhorse for de facto FX regime classification is a linear
regression model based on log-returns of cross-currency exchange
rates (with respect to some floating reference currency). In the
literature, this is also known as Frankel-Wei regression.

For modeling the log-returns of CNY a basket of regressors USD, JPY,
EUR, and GBP (all log-returns wrt CHF) is employed.

Fitting the model for the first three months (up to 2005-10-31, n = 68)
shows that a plain USD peg is still in operation.



Exchange rate regression

Ordinary least squares (OLS) estimation gives:

CNYi = 0.005
(0.004)

+ 0.9997
(0.009)

USDi + 0.005
(0.011)

JPYi

− 0.014
(0.027)

EURi − 0.008
(0.015)

GBPi + ε̂i

Only the USD coefficient is significantly different from 0 (but not from 1).

The error standard deviation is tiny with σ̂ = 0.028 leading to
R2 = 0.998.

Exchange rate regression

Questions:
1 Is this model for the period 2005-07-26 to 2005-10-31 stable or is

there evidence that China kept changing its FX regime after
2005-07-26? (testing)

2 Depending on the answer to the first question:
Does the CNY stay pegged to the USD in the future (starting from
November 2005? (monitoring)
When and how did the Chinese FX regime change? (dating)

Exchange rate regression

In practice: Rolling regressions are often used to answer these
questions by tracking the evolution of the FX regime in operation.

More formally: Structural change techniques can be adapted to the FX
regression to estimate and test the stability of FX regimes.

Problem: Unlike many other linear regression models, the stability of
the error variance (fluctuation band) is of interest as well.

Solution: Employ an (approximately) normal regression estimated by
ML where the variance is a full model parameter.

Model frame

Generic idea: Consider a regression model for n ordered observations
yi | xi with k -dimensional parameter θ. Ordering is typically with respect
to time in time-series regressions, but could also be with respect to
income, age, etc. in cross-section regressions.

To fit the model to observations i = 1, . . . , n an objective function
Ψ(y , x , θ) is used such that

θ̂ = argmin
θ

n∑

i=1

Ψ(yi , xi , θ).

This can also be defined implicitly based on the corresponding score
function (or estimating function) ψ(y , x , θ) = ∂Ψ(y , x , θ)/∂θ:

n∑

i=1

ψ(yi , xi , θ̂) = 0.



Model frame

This class of M-estimators includes OLS and maximum likelihood (ML)
estimation as well as IV, Quasi-ML, robust M-estimation etc.

Under parameter stability and some mild regularity conditions, a central
limit theorem holds

√
n(θ̂ − θ0)

d−→ N (0,V (θ0)),

where the covariance matrix is

V (θ0) = {A(θ0)}−1B(θ0){A(θ0)}−1

and A and B are the expectation of the derivative of ψ and its variance
respectively.

Model frame

For the standard linear regression model

yi = x>i β + εi

with coefficients β and error variance σ2 one can either treat σ2 as a
nuisance parameter θ = β or include it as θ = (β, σ2).

In the former case, the estimating functions are ψ = ψβ

ψβ(y , x , β) = (y − x>β) x

and in the latter case, they have an additional component

ψσ2(y , x , β, σ2) = (y − x>β)2 − σ2.

and ψ = (ψβ, ψσ2). This is used for FX regressions.

Model frame

Testing: Given that a model with parameter θ̂ has been estimated for
these n observations, the question is whether this is appropriate or: Are
the parameters stable or did they change through the sample period
i = 1, . . . , n?

Monitoring: Given that a stable model could be established for these n
observations, the question is whether it remains stable in the future or:
Are incoming observations for i > n still consistent with the established
model or do the parameters change?

Dating: Given that there is evidence for a structural change in
i = 1, . . . , n, it might be possible that stable regression relationships
can be found on subsets of the data. How many segments are in the
data? Where are the breakpoints?

Testing

To assess the stability of the fitted model with θ̂, we want to test the null
hypothesis

H0 : θi = θ0 (i = 1, . . . , n)

against the alternative that θi varies over “time” i .

Various patterns of deviation from H0 are conceivable: single/multiple
break(s), random walks, etc.

To test this null hypothesis, the basic idea is to assess wether the
empirical estimating functions ψ̂i = ψ(yi , xi , θ̂) deviate systematically
from their theoretical zero mean.



Testing

To capture systematic deviations the empirical fluctuation process of
scaled cumulative sums of empirical estimating functions is computed:

efp(t) = B̂−1/2 n−1/2
bntc∑

i=1

ψ̂i (0 ≤ t ≤ 1).

Under H0 the following functional central limit theorem (FCLT) holds:

efp(·) d−→ W 0(·),

where W 0 denotes a standard k -dimensional Brownian bridge.

Testing

Testing procedure:

empirical fluctuation processes captures fluctuation in estimating
functions

theoretical limiting process is known

choose boundaries which are crossed by the limiting process (or
some functional of it) only with a known probability α.

if the empirical fluctuation process crosses the theoretical
boundaries the fluctuation is improbably large⇒ reject the null
hypothesis.

Testing
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Testing

More formally: These boundaries correspond to critical values for a
double maximum test statistic

max
j=1,...,k

max
i=1,...,n

|efpj(i/n)|

which is 1.097 for the Chinese FX regression (p = 0.697).

Alternatively: Employ other test statistics for aggregation.

Special cases: This class contains various well-known tests from the
statistics and econometrics literature, e.g., Andrews’ supLM test,
Nyblom-Hansen test, OLS-based CUSUM/MOSUM tests.



Testing

In empirical samples, efp(·) is a k × n array. For significance testing,
aggregate it to a scalar test statistic by a functional λ(·)

λ

(
efpj

(
i
n

))
,

where j = 1, . . . , k and i = 1, . . . n.

Typically, λ(·) can be split up into

λcomp(·) aggregating over components j (e.g., absolute maximum,
Euclidian norm),

λtime(·) aggregating over time i (e.g., max, mean, range).

The limiting distribution is given by λ(W 0) and can easily be simulated
(or some closed form results are also available).

Testing

Nyblom-Hansen test: The test was designed for a random-walk
alternative and employs a Cramér-von Mises functional.

1
n

n∑

i=1

∣∣∣∣
∣∣∣∣efp

(
i
n

)∣∣∣∣
∣∣∣∣
2

2
.

It aggregates efp(·) over the components first, using the squared
Euclidian norm, and then over time, using the mean.

For the Chinese FX regression this is 1.012 (p = 0.364).

Testing
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Testing

Andrews’ supLM test: This test is designed for a single shift
alternative (with unknown timing) and employs the supremum of LM
statistics for this alternative.

sup
t∈Π

LM(t) = sup
t∈Π

||efp(t)||22
t (1− t)

.

It aggregates efp(·) over the components first, using a weighted
squared Euclidian norm, and then over time, using the maximum (over
a compact interval Π ⊂ [0, 1]).

For the Chinese FX regression this is 10.055 (p = 0.766), using
Π = [0.1, 0.9].



Testing
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Monitoring

Idea: Fluctuation tests can be applied sequentially to monitor
regression models.

More formally: Sequentially test the null hypothesis

H0 : θi = θ0 (i > n)

against the alternative that θi changes at some time in the future i > n
(corresponding to t > 1).

Basic assumption: The model parameters are stable θi = θ0 in the
history period i = 1, . . . , n (0 ≤ t ≤ 1).

Monitoring

Test statistics: Update efp(t), and re-compute λ(efp(t)) in the
monitoring period 1 ≤ t ≤ T .

Critical values: For sequential testing not only a single critical value is
needed, but a full boundary function b(t) that satisfies

1− α = P(λ(W 0(t)) ≤ b(t) | t ∈ [1,T ])

Various boundary (or weighting) functions are conceivable that can
direct power to early or late changes or try to spread the power evenly.

In 2005: Ajay Shah, Ila Patnaik, and Achim Zeileis establish a webpage
and start monitoring the CNY regime. A double maximum functional
with boundary b(t) = c · t is employed (where c controls the
significance level, using T = 4 and α = 0.05).

Monitoring
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Monitoring
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Monitoring
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Monitoring

Time

−
10

0
10

20

(Intercept)

Aug Oct Dec Feb Apr Jun

−
10

0
10

20

USD

−
10

0
10

20

JPY

−
10

0
10

20

EUR

−
10

0
10

20

Aug Oct Dec Feb Apr Jun

GBP

−
10

0
10

20

(Variance)

Monitoring

This signals a clear increase in the error variance.

The change is picked up by the monitoring procedure on 2006-03-27.

The other regression coefficients did not change significantly, signalling
that they are not part of the basket peg.

Using data from an extended period up to 2009-07-31, we fit a
segmented model to determine where and how the model parameters
changed.

Dating

Segmented regression model: A stable model with parameter vector
θ(j) holds for the observations in i = ij−1 + 1, . . . , ij . The segment index
is j = 1, . . . ,m + 1.

The set of m breakpoints Im,n = {i1, . . . , im} is called m-partition.
Convention: i0 = 0 and im+1 = n.

The value of the segmented objective function Ψ is

PSI(i1, . . . , im) =
m+1∑

j=1

psi(ij−1 + 1, ij),

psi(ij−1 + 1, ij) =

ij∑

i=ij−1+1

Ψ(yi , xi , θ̂
(j)).



Dating

Thus, psi(ij−1 + 1, ij) is the minimal value of the objective function for
the model fitted on the j th segment.

Dating tries to find

(̂ı1, . . . , ı̂m) = argmin
(i1,...,im)

PSI(i1, . . . , im)

over all partitions (i1, . . . , im) with ij − ij−1 + 1 ≥ bnhc ≥ k .

Bellman principle of optimality:

PSI(Im,n) = min
mnh≤i≤n−nh

[PSI(Im−1,i) + psi(i + 1, n)]

Dating

It is well-known that this problem can be solved by a dynamic
programming algorithm of order O(n2) that essentially relies on a
triangular matrix of psi(i, j) for all 1 ≤ i < j ≤ n.

In linear regressions this approach has been popularized by Bai &
Perron and it is common practice to use the residual sum of squares as
objective function:

ΨRSS(yi , xi , β) = (yi − x>i β)2.

To capture changes in the variances as well the (negative)
log-likelihood from a normal model can be employed:

ΨNLL(yi , xi , β, σ) = − log
(
σ−1φ

(
yi − x>i β

σ

))
.

Dating

Thus, for a given number of breaks m, the optimal breaks ı̂1, . . . , ı̂m be
found.

To determine the number of breaks, some model selection has to be
done, e.g., via information criteria or sequential tests. Here, we use the
LWZ criterion (modified BIC):

IC(m) = 2 · NLL(Im,n) + pen · ((m + 1)k + m) ,

penBIC = log(n),

penLWZ = 0.299 · log(n)2.1.

Dating
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Dating

The estimated breakpoints and parameters are:

start/end β0 βUSD βJPY βEUR βGBP σ R2

2005-07-26 −0.005 0.999 0.005 −0.015 0.007 0.028 0.998
2006-03-14 (0.002) (0.005) (0.005) (0.017) (0.008)
2006-03-15 −0.025 0.969 −0.009 0.026 −0.013 0.106 0.965
2008-08-22 (0.004) (0.012) (0.010) (0.023) (0.012)
2008-08-25 −0.015 1.031 −0.026 0.049 0.007 0.263 0.956
2008-12-31 (0.030) (0.044) (0.030) (0.059) (0.035)
2009-01-02 0.001 0.981 0.008 −0.008 0.009 0.044 0.998
2009-07-31 (0.004) (0.005) (0.004) (0.009) (0.004)

corresponding to
1 tight USD peg with slight appreciation,
2 slightly relaxed USD peg with some more appreciation,
3 slightly relaxed USD peg without appreciation,
4 tight USD peg without appreciation.

Dating

7.
0

7.
5

8.
0

Time

F
X

 r
at

e

2006 2007 2008 2009 2010

CNY/USD

Dating

Epilogue: What happened since summer 2009?

Estimation based on 2009-08-04 through 2010-01-29 (n = 122) gives:

CNYi = 0.001
(0.002)

+ 0.9953
(0.003)

USDi + 0.002
(0.003)

JPYi

+ 0.007
(0.011)

EURi + 0.004
(0.003)

GBPi + ε̂i

Only the USD coefficient is significantly different from 0 (but not from 1).

The error standard deviation became even smaller with σ̂ = 0.018
leading to R2 = 0.999.

Software

All methods are implemented in the R system for statistical computing
and graphics and are freely available in the contributed packages
strucchange and fxregime from the Comprehensive R Archive Network:

http://www.R-project.org/

http://CRAN.R-project.org/



Software: strucchange

Classical structural change tools for OLS regression:

Testing: efp(), Fstats(), sctest().

Monitoring: mefp(), monitor().

Dating: breakpoints().

Vignette: "strucchange-intro".

Object-oriented structural change tools:

Testing: gefp(), efpFunctional() (including special cases:
maxBB, meanL2BB, supLM, . . . ).

Monitoring: Object-oriented implementation still to do.

Dating: Some currently unexported support in gbreakpoints()

in fxregime.

Vignette: None, but CSDA paper.

Software: fxregime

Structural change tools for exchange rate regression based on normal
(quasi-)ML:

Data: FXRatesCHF (“zoo” series with US Federal Reserve
exchange rates in CHF for various currencies).

Preprocessing: fxreturns().

Model fitting: fxlm().

Testing: gefp() from strucchange.

Monitoring: fxmonitor().

Dating: fxregimes() based on currently unexported
gbreakpoints(); refit() method for fitting segmented
regression.

Vignettes: "CNY", "INR".

Application: Indian FX regimes

India also has an expanding economy with a currency receiving
increased interest over the last years. We track the evolution of the INR
FX regime since trading in the INR began.

R> head(FXRatesCHF[, c(1:6, 13)], 3)

USD JPY DUR EUR DEM GBP INR
1971-01-04 0.232 82.8 0.429 NA 0.844 0.0967 NA
1971-01-05 0.232 83.0 0.429 NA 0.845 0.0968 NA
1971-01-06 0.232 83.0 0.429 NA 0.845 0.0968 NA

R> inr <- fxreturns("INR", data = FXRatesCHF,
+ other = c("USD", "JPY", "DUR", "GBP"), frequency = "weekly",
+ start = as.Date("1993-04-01"), end = as.Date("2008-01-04"))
R> head(inr, 3)

INR USD JPY DUR GBP
1993-04-09 0.9773 0.9773 0.0977 0.567 -0.02236
1993-04-16 -0.0339 -0.0339 -0.5387 0.625 0.14295
1993-04-23 3.2339 3.2339 1.4331 1.264 0.00876

Application: Indian FX regimes

Using weekly returns from 1993-04-09 through to 2008-01-04 (yielding
n = 770 observations), we fit a single FX regression using the same
basket as above.

R> inr_lm <- fxlm(INR ~ USD + JPY + DUR + GBP, data = inr)
R> coef(inr_lm)

(Intercept) USD JPY DUR GBP
0.0280 0.9185 0.0405 0.1046 0.0484

(Variance)
0.3375



Application: Indian FX regimes

As we would expect multiple changes, we assess its stability with the
Nyblom-Hansen test. Alternatively, a MOSUM test could be used. The
double maximum test has less power.

R> inr_efp <- gefp(inr_lm, fit = NULL)
R> sctest(inr_efp, functional = meanL2BB)

M-fluctuation test

data: inr_efp
f(efp) = 3.11, p-value = 0.005

R> sctest(inr_efp, functional = maxBB)

M-fluctuation test

data: inr_efp
f(efp) = 1.72, p-value = 0.03099

Application: Indian FX regimes

R> plot(inr_efp, functional = meanL2BB)
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Application: Indian FX regimes

R> plot(inr_efp, functional = maxBB, aggregate = FALSE,
+ ylim = c(-2, 2))
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Application: Indian FX regimes

Dating is computationally more demanding. The dynamic programming
algorithm can be parallelized, though. This is easily available (thanks to
Anmol Sethy) by means of optional foreach support in fxregime.

R> library("foreach")
R> library("doMC")
R> registerDoMC(2)
R> inr_reg <- fxregimes(INR ~ USD + JPY + DUR + GBP, data = inr,
+ h = 20, breaks = 10, hpc = "foreach")



Application: Indian FX regimes

R> plot(inr_reg)
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Application: Indian FX regimes

Various methods for extracting information can be applied directly.
Otherwise, refitting of FX regressions gives access to all quantities that
might be of interest.

R> coef(inr_reg)[, 1:5]

(Intercept) USD JPY DUR GBP
1993-04-09--1995-03-03 -0.00574 0.972 0.02347 0.0113 0.02037
1995-03-10--1998-08-21 0.16113 0.943 0.06692 -0.0261 0.04236
1998-08-28--2004-03-19 0.01861 0.993 0.00976 0.0983 -0.00322
2004-03-26--2008-01-04 -0.05761 0.746 0.12561 0.4354 0.12137

R> inr_rf <- refit(inr_reg)
R> sapply(inr_rf, function(x) summary(x)$r.squared)

1993-04-09--1995-03-03 1995-03-10--1998-08-21 1998-08-28--2004-03-19
0.989 0.729 0.969

2004-03-26--2008-01-04
0.800

Application: Indian FX regimes

Somewhat more compactly:

start/end β0 βUSD βJPY βDUR βGBP σ R2

1993-04-09 −0.006 0.972 0.023 0.011 0.020 0.157 0.989
1995-03-03 (0.017) (0.018) (0.014) (0.032) (0.024)
1995-03-10 0.161 0.943 0.067 −0.026 0.042 0.924 0.729
1998-08-21 (0.071) (0.074) (0.048) (0.155) (0.080)
1998-08-28 0.019 0.993 0.010 0.098 −0.003 0.275 0.969
2004-03-19 (0.016) (0.016) (0.010) (0.034) (0.021)
2004-03-26 −0.058 0.746 0.126 0.435 0.121 0.579 0.800
2008-01-04 (0.042) (0.045) (0.042) (0.116) (0.056)

corresponding to
1 tight USD peg,
2 flexible USD peg,
3 tight USD peg,
4 flexible basket peg.

Next steps

Current activities: Application to wider range of currencies.

Of particular interest: Classification of exchange rate regimes and
monitoring.

Open problems:

Fully automatic selection of breakpoints.

Sequential usage of BIC/LWZ, i.e., with growing sample size n.

Differences between subsequent regimes that are statistically
significant but not practically relevant (or vice versa).

First steps: Anmol Sethy started to build infrastructure for larger FX
rates database from mixed sources.

First results: World map of R2 from FX regressions (basket: USD,
EUR, JPY, GBP), November 2009, based on segmented weekly data.



Next steps Summary

Exchange rate regime analysis can be complemented by structural
change tools.

Both coefficients (currency weights) and error variance (fluctuation
band) can be assessed using an (approximately) normal
regression model.

Estimation, testing, monitoring, and dating are all based on the
same model, i.e., the same objective function.

Traditional significance tests can be complemented by graphical
methods conveying timing and component affected by a structural
change.

Software is freely available, both for the general method and the
application to FX regimes.
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