
GPU computing with the gputools package

April 12, 2010

GPU computing with the gputools package

Overview

I Introduction.

I The package.

I W(h)ither gputools?

I Audience participation.

GPU computing with the gputools package

Overview

I Introduction.

I The package.

I W(h)ither gputools?

I Audience participation.

GPU computing with the gputools package

Overview

I Introduction.

I The package.

I W(h)ither gputools?

I Audience participation.

GPU computing with the gputools package

Overview

I Introduction.

I The package.

I W(h)ither gputools?

I Audience participation.

GPU computing with the gputools package

GPU ≡ graphical processing unit

I Special–purpose coprocessor for graphics applications.

I Highly parallel hardware with 32–bit vector–processing
capabilities.

I Early numerical applications appear to be due to physicists
(cf. www.gpgpu.org):

I Lattice–Boltzmann computations: Li et al., 2002.
I Boundary–value problems: Goodnight et al., 2003.
I Matrix algebra, dynamic applications: Moravanszky, 2003.

I Require specialized drivers, software to program - not easy.

I API’s from NVidia (“CUDA”) and ATI/AMD now freely
available.

I Math–capable GPU’s are now inexpensive. Standard
equipment on many computers, including laptops.

GPU computing with the gputools package

GPU ≡ graphical processing unit

I Special–purpose coprocessor for graphics applications.

I Highly parallel hardware with 32–bit vector–processing
capabilities.

I Early numerical applications appear to be due to physicists
(cf. www.gpgpu.org):

I Lattice–Boltzmann computations: Li et al., 2002.
I Boundary–value problems: Goodnight et al., 2003.
I Matrix algebra, dynamic applications: Moravanszky, 2003.

I Require specialized drivers, software to program - not easy.

I API’s from NVidia (“CUDA”) and ATI/AMD now freely
available.

I Math–capable GPU’s are now inexpensive. Standard
equipment on many computers, including laptops.

GPU computing with the gputools package

GPU ≡ graphical processing unit

I Special–purpose coprocessor for graphics applications.

I Highly parallel hardware with 32–bit vector–processing
capabilities.

I Early numerical applications appear to be due to physicists
(cf. www.gpgpu.org):

I Lattice–Boltzmann computations: Li et al., 2002.
I Boundary–value problems: Goodnight et al., 2003.
I Matrix algebra, dynamic applications: Moravanszky, 2003.

I Require specialized drivers, software to program - not easy.

I API’s from NVidia (“CUDA”) and ATI/AMD now freely
available.

I Math–capable GPU’s are now inexpensive. Standard
equipment on many computers, including laptops.

GPU computing with the gputools package

GPU ≡ graphical processing unit

I Special–purpose coprocessor for graphics applications.

I Highly parallel hardware with 32–bit vector–processing
capabilities.

I Early numerical applications appear to be due to physicists
(cf. www.gpgpu.org):

I Lattice–Boltzmann computations: Li et al., 2002.
I Boundary–value problems: Goodnight et al., 2003.
I Matrix algebra, dynamic applications: Moravanszky, 2003.

I Require specialized drivers, software to program - not easy.

I API’s from NVidia (“CUDA”) and ATI/AMD now freely
available.

I Math–capable GPU’s are now inexpensive. Standard
equipment on many computers, including laptops.

GPU computing with the gputools package

GPU ≡ graphical processing unit

I Special–purpose coprocessor for graphics applications.

I Highly parallel hardware with 32–bit vector–processing
capabilities.

I Early numerical applications appear to be due to physicists
(cf. www.gpgpu.org):

I Lattice–Boltzmann computations: Li et al., 2002.
I Boundary–value problems: Goodnight et al., 2003.
I Matrix algebra, dynamic applications: Moravanszky, 2003.

I Require specialized drivers, software to program - not easy.

I API’s from NVidia (“CUDA”) and ATI/AMD now freely
available.

I Math–capable GPU’s are now inexpensive. Standard
equipment on many computers, including laptops.

GPU computing with the gputools package

GPU ≡ graphical processing unit

I Special–purpose coprocessor for graphics applications.

I Highly parallel hardware with 32–bit vector–processing
capabilities.

I Early numerical applications appear to be due to physicists
(cf. www.gpgpu.org):

I Lattice–Boltzmann computations: Li et al., 2002.
I Boundary–value problems: Goodnight et al., 2003.
I Matrix algebra, dynamic applications: Moravanszky, 2003.

I Require specialized drivers, software to program - not easy.

I API’s from NVidia (“CUDA”) and ATI/AMD now freely
available.

I Math–capable GPU’s are now inexpensive. Standard
equipment on many computers, including laptops.

GPU computing with the gputools package

I GPU–enabled numerical software becoming available
commercially.

I Jacket, a Matlab accessory from Acclereyes.
I Mathematica support.
I Numerous standalone packages on NVidia website.

I Why not R?
I Buckner et al. release “gputools” 0.1 in spring, 2009.

I Tools related to that group’s work looking for causal relations
in gene–expression data.

I Co–collaboration leads to paper submitted last summer.
I “The gputools package enables GPU computing in R”
I Buckner, Wilson, Seligman, Athey, Watson, Meng
I Bioinformatics, 2010 26(1):134–135

I Remains very much a work in progress.

GPU computing with the gputools package

I GPU–enabled numerical software becoming available
commercially.

I Jacket, a Matlab accessory from Acclereyes.
I Mathematica support.
I Numerous standalone packages on NVidia website.

I Why not R?

I Buckner et al. release “gputools” 0.1 in spring, 2009.
I Tools related to that group’s work looking for causal relations

in gene–expression data.

I Co–collaboration leads to paper submitted last summer.
I “The gputools package enables GPU computing in R”
I Buckner, Wilson, Seligman, Athey, Watson, Meng
I Bioinformatics, 2010 26(1):134–135

I Remains very much a work in progress.

GPU computing with the gputools package

I GPU–enabled numerical software becoming available
commercially.

I Jacket, a Matlab accessory from Acclereyes.
I Mathematica support.
I Numerous standalone packages on NVidia website.

I Why not R?
I Buckner et al. release “gputools” 0.1 in spring, 2009.

I Tools related to that group’s work looking for causal relations
in gene–expression data.

I Co–collaboration leads to paper submitted last summer.
I “The gputools package enables GPU computing in R”
I Buckner, Wilson, Seligman, Athey, Watson, Meng
I Bioinformatics, 2010 26(1):134–135

I Remains very much a work in progress.

GPU computing with the gputools package

I GPU–enabled numerical software becoming available
commercially.

I Jacket, a Matlab accessory from Acclereyes.
I Mathematica support.
I Numerous standalone packages on NVidia website.

I Why not R?
I Buckner et al. release “gputools” 0.1 in spring, 2009.

I Tools related to that group’s work looking for causal relations
in gene–expression data.

I Co–collaboration leads to paper submitted last summer.
I “The gputools package enables GPU computing in R”
I Buckner, Wilson, Seligman, Athey, Watson, Meng
I Bioinformatics, 2010 26(1):134–135

I Remains very much a work in progress.

GPU computing with the gputools package

I GPU–enabled numerical software becoming available
commercially.

I Jacket, a Matlab accessory from Acclereyes.
I Mathematica support.
I Numerous standalone packages on NVidia website.

I Why not R?
I Buckner et al. release “gputools” 0.1 in spring, 2009.

I Tools related to that group’s work looking for causal relations
in gene–expression data.

I Co–collaboration leads to paper submitted last summer.
I “The gputools package enables GPU computing in R”
I Buckner, Wilson, Seligman, Athey, Watson, Meng
I Bioinformatics, 2010 26(1):134–135

I Remains very much a work in progress.

GPU computing with the gputools package

Package highlights

I Contributions from MBNI team include:
I Correlation - Pearson and Kendall (JB/JW): cor()
I Granger causality (JB): granger.test from MSBVAR
I Hierarchical clustering (JB/JW): hclust
I Spline–based mutual information (JB)
I Matrix multiplication (cudablas wrapper): %*%
I SVM training (wrapper): svm from e1071
I SVD (wrapper): fastICA package
I attendant functions and package layout

GPU computing with the gputools package

I Contributions from MLS include:
I Linear, generalized linear modeling: lm(), glm()
I Least–squares fit: lsfit()
I Rank–revealing QR decomposition: qr()
I Blocked, partial–pivoting QR
I Matrix cross–products: crossprod()

GPU computing with the gputools package

Differences in contribution reflect complementary
approaches

I JB:
I Higher–level, although some key lower–level functions (e.g.,

matrix multiplication) also implemented.
I Less oriented toward traditional numerical linear algebra, so

able to exploit richer set of concurrent algorithms.
I By same token, implementation relies less on lower–level

libraries and more on hand–coded parallelism.
I Relatively small communication costs result in 10x – 50+x

speedup over CPU–only implementations.

GPU computing with the gputools package

I MLS:
I Mostly lower–level utiltities, with same look and feel as their

base–package counterparts.
I More like traditional NLA. In fact QR decomposition drives

much of the work.
I Relies much more heavily on low–level libraries, viz., cudaBlas.
I Communication costs higher (think Householder

transformations and block updates). 1000× 1000 matrix
needed for breakeven, more like 4000× 4000 needed to start
seeing 10x. On the bright side, though, much bigger matrices
now treatable in “user time”.

GPU computing with the gputools package

Hardware, tools requirements

I CUDA–supporting GPU. Radeon not supported yet.

I CUDA driver and development tools, available as free
downloads from NVidia: compiler, libraries (cudaBLAS).

I gputools v0.2 supported on Linux, 32–bit Mac; available from
CRAN.

Beta versions
Downloadable from:
http://brainarray.mbni.med.umich.edu/brainarray/rgpgpu/

I Just download and install. Run–time environment checks for
presence of the GPU. Emulator runs if no GPU present.

I Familiar R commands prefaced by “gpu”. E.g., gpuLm(),
gpuCor(),

GPU computing with the gputools package

Hardware, tools requirements

I CUDA–supporting GPU. Radeon not supported yet.

I CUDA driver and development tools, available as free
downloads from NVidia: compiler, libraries (cudaBLAS).

I gputools v0.2 supported on Linux, 32–bit Mac; available from
CRAN.

Beta versions
Downloadable from:
http://brainarray.mbni.med.umich.edu/brainarray/rgpgpu/

I Just download and install. Run–time environment checks for
presence of the GPU. Emulator runs if no GPU present.

I Familiar R commands prefaced by “gpu”. E.g., gpuLm(),
gpuCor(),

GPU computing with the gputools package

Hardware, tools requirements

I CUDA–supporting GPU. Radeon not supported yet.

I CUDA driver and development tools, available as free
downloads from NVidia: compiler, libraries (cudaBLAS).

I gputools v0.2 supported on Linux, 32–bit Mac; available from
CRAN.

Beta versions
Downloadable from:
http://brainarray.mbni.med.umich.edu/brainarray/rgpgpu/

I Just download and install. Run–time environment checks for
presence of the GPU. Emulator runs if no GPU present.

I Familiar R commands prefaced by “gpu”. E.g., gpuLm(),
gpuCor(),

GPU computing with the gputools package

Hardware, tools requirements

I CUDA–supporting GPU. Radeon not supported yet.

I CUDA driver and development tools, available as free
downloads from NVidia: compiler, libraries (cudaBLAS).

I gputools v0.2 supported on Linux, 32–bit Mac; available from
CRAN.

Beta versions
Downloadable from:
http://brainarray.mbni.med.umich.edu/brainarray/rgpgpu/

I Just download and install. Run–time environment checks for
presence of the GPU. Emulator runs if no GPU present.

I Familiar R commands prefaced by “gpu”. E.g., gpuLm(),
gpuCor(),

GPU computing with the gputools package

Hardware, tools requirements

I CUDA–supporting GPU. Radeon not supported yet.

I CUDA driver and development tools, available as free
downloads from NVidia: compiler, libraries (cudaBLAS).

I gputools v0.2 supported on Linux, 32–bit Mac; available from
CRAN.

Beta versions
Downloadable from:
http://brainarray.mbni.med.umich.edu/brainarray/rgpgpu/

I Just download and install. Run–time environment checks for
presence of the GPU. Emulator runs if no GPU present.

I Familiar R commands prefaced by “gpu”. E.g., gpuLm(),
gpuCor(),

GPU computing with the gputools package

Some conclusions

I NLA–style kernels make heavy use of cudaBLAS calls. Very
little device–level programming required for these. Key
concerns here are minimizing communication, exploiting data
locality - e.g., blocking.

I These types of kernels have large breakeven sizes. The
1000× 1000 observed for QR is in line with the literature,
however.

I Some utilities exhibit more concurrency and achieve more
dramatic speedups, with much lower breakeven size. These
tend to require more device–level implementation, however.
These tend to be less like kernels and more like higher–level
applications.

GPU computing with the gputools package

Some conclusions

I NLA–style kernels make heavy use of cudaBLAS calls. Very
little device–level programming required for these. Key
concerns here are minimizing communication, exploiting data
locality - e.g., blocking.

I These types of kernels have large breakeven sizes. The
1000× 1000 observed for QR is in line with the literature,
however.

I Some utilities exhibit more concurrency and achieve more
dramatic speedups, with much lower breakeven size. These
tend to require more device–level implementation, however.
These tend to be less like kernels and more like higher–level
applications.

GPU computing with the gputools package

Some conclusions

I NLA–style kernels make heavy use of cudaBLAS calls. Very
little device–level programming required for these. Key
concerns here are minimizing communication, exploiting data
locality - e.g., blocking.

I These types of kernels have large breakeven sizes. The
1000× 1000 observed for QR is in line with the literature,
however.

I Some utilities exhibit more concurrency and achieve more
dramatic speedups, with much lower breakeven size. These
tend to require more device–level implementation, however.
These tend to be less like kernels and more like higher–level
applications.

GPU computing with the gputools package

I Single–precision seems to be “good enough” for one–off
invocations, but where does this begin to break down?

I Questions:
Are current problems of interest large enough to benefit from these
speedups? Will we need to “expose the kernel”?

I Tracking R–base is a software–engineering hassle.

GPU computing with the gputools package

I Single–precision seems to be “good enough” for one–off
invocations, but where does this begin to break down?

I Questions:
Are current problems of interest large enough to benefit from these
speedups? Will we need to “expose the kernel”?

I Tracking R–base is a software–engineering hassle.

GPU computing with the gputools package

I Single–precision seems to be “good enough” for one–off
invocations, but where does this begin to break down?

I Questions:
Are current problems of interest large enough to benefit from these
speedups? Will we need to “expose the kernel”?

I Tracking R–base is a software–engineering hassle.

GPU computing with the gputools package

Low–hanging fruit

I Double precision
I DP now available in low–priced boards
I SP / DP ratio moving from 8x to 2x

I Rank–revealing options, as applicable.
I Sampling, resampling tools

I CUDA–ready Mersenne Twister
I rnorm(), rgamma(), . . .
I Ready applications in bootstrapping, MCMC
I Also a CUDA–ready QRNG.

I Benchmarking: vs. mkl, as well as tuned libraries. Especially,
identifying the break–even points

I Integration with other packages.

GPU computing with the gputools package

Low–hanging fruit

I Double precision
I DP now available in low–priced boards
I SP / DP ratio moving from 8x to 2x

I Rank–revealing options, as applicable.

I Sampling, resampling tools
I CUDA–ready Mersenne Twister
I rnorm(), rgamma(), . . .
I Ready applications in bootstrapping, MCMC
I Also a CUDA–ready QRNG.

I Benchmarking: vs. mkl, as well as tuned libraries. Especially,
identifying the break–even points

I Integration with other packages.

GPU computing with the gputools package

Low–hanging fruit

I Double precision
I DP now available in low–priced boards
I SP / DP ratio moving from 8x to 2x

I Rank–revealing options, as applicable.
I Sampling, resampling tools

I CUDA–ready Mersenne Twister
I rnorm(), rgamma(), . . .
I Ready applications in bootstrapping, MCMC
I Also a CUDA–ready QRNG.

I Benchmarking: vs. mkl, as well as tuned libraries. Especially,
identifying the break–even points

I Integration with other packages.

GPU computing with the gputools package

Low–hanging fruit

I Double precision
I DP now available in low–priced boards
I SP / DP ratio moving from 8x to 2x

I Rank–revealing options, as applicable.
I Sampling, resampling tools

I CUDA–ready Mersenne Twister
I rnorm(), rgamma(), . . .
I Ready applications in bootstrapping, MCMC
I Also a CUDA–ready QRNG.

I Benchmarking: vs. mkl, as well as tuned libraries. Especially,
identifying the break–even points

I Integration with other packages.

GPU computing with the gputools package

Low–hanging fruit

I Double precision
I DP now available in low–priced boards
I SP / DP ratio moving from 8x to 2x

I Rank–revealing options, as applicable.
I Sampling, resampling tools

I CUDA–ready Mersenne Twister
I rnorm(), rgamma(), . . .
I Ready applications in bootstrapping, MCMC
I Also a CUDA–ready QRNG.

I Benchmarking: vs. mkl, as well as tuned libraries. Especially,
identifying the break–even points

I Integration with other packages.

GPU computing with the gputools package

Medium term

I AMD/ATI Radeon support, openCL

I Mutlicore–aware implementations

I Exposing kernels

GPU computing with the gputools package

Medium term

I AMD/ATI Radeon support, openCL

I Mutlicore–aware implementations

I Exposing kernels

GPU computing with the gputools package

Medium term

I AMD/ATI Radeon support, openCL

I Mutlicore–aware implementations

I Exposing kernels

GPU computing with the gputools package

Long term

I Playing well in all sorts of hardware environment: multiple
GPU, CPU; clusters; clouds . . .

I Seamless integration: hardware details under the covers. Do
you really want to preface everything with “gpu”?

I Assimilation.

GPU computing with the gputools package

Long term

I Playing well in all sorts of hardware environment: multiple
GPU, CPU; clusters; clouds . . .

I Seamless integration: hardware details under the covers. Do
you really want to preface everything with “gpu”?

I Assimilation.

GPU computing with the gputools package

Long term

I Playing well in all sorts of hardware environment: multiple
GPU, CPU; clusters; clouds . . .

I Seamless integration: hardware details under the covers. Do
you really want to preface everything with “gpu”?

I Assimilation.

GPU computing with the gputools package

Acknowledgments

The MBNI group wish to acknowledge their funding sources:

I J. Buckner, J. Wilson, and F. Meng are members of the
Pritzker Neuropsychiatric Disorders Research Consortium,
which is supported by the Pritzker Neuropsychiatric Disorders
Research Fund LLC.

I This work is also partly supported by the National Center for
Integrated Biomedical Informatics through NIH grant
1U54DA021519-01A1 to the University of Michigan.

GPU computing with the gputools package

MLS wishes to thank:

I Roger Ngouenet, XL Solutions

I Mark Troll, Rapid Biologics and Aaaron Thermal Technologies

I Dirk Eddelbuettel

I Chris Fraley, Insilicos LLC and UW Statistics

I Anne Greenbaum, UW AMath

GPU computing with the gputools package

