Statistical Finance for Investors Unfamiliar with Quantitative Methods Using stockPortfolio in R

Nicolas Christou David Diez UCLA Department of Statistics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

David Diez, Nicolas Christou

stockPortfolio in F

Overview

The stockPortfolio package is very easy to navigate. There are three simple steps to select an optimal portfolio using three functions:

 Download data (automated) using a vector of stock tickers and a range of dates.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

```
> stockData <- getReturns(vectorOfTickers,</pre>
```

```
+ start="2004-09-01", end="2009-09-01")
```

Ø Model the stocks in one of the four offered models.

```
> model1 <- stockModel(stockData)
> model2 <- stockModel(stockData, model="CCM")
...</pre>
```

```
Identify the optimal portfolio.
```

```
> optPort <- optimalPort(model1)</pre>
```

Modeling stocks 00000

Obtaining data

- Pick your stocks and get their tickers in a vector (ticker).
- Raw stock data are the stock *prices*.
- The function getReturns retrieves the adjusted close prices from http://finance.yahoo.com and computes the *returns*.
- A return is just the percent gain/loss in decimal form: 10.3% gain means a return of 0.103.

> ticker <- c("C", "IBM",

```
+ "JPM", "WFC")
```

> gR <- getReturns(ticker,</pre>

Modeling stocks

Function declaration: getReturns

```
getReturns(ticker,
    freq = c("month", "week", "day"),
    get = c("overlapOnly", "all"),
    start = "1970-01-01",
    end = NULL)
```

The default, overlapOnly, will return the stock returns for which all stocks had data and drop any dates with NA. Warning: setting get="all" often results in problems with missing values.

Stock Data		
000		

Example

We will use the tickers from the stock data in stock94Info.

```
> data(stock94Info)
> ticker <- stock94Info$ticker</pre>
    "C"
 [1]
             "KEY"
                      "WFC"
                               "JPM"
                                       "SO"
                                                "DUK"
 [7]
    "D"
           "HE" "EIX" "LUV"
                                       "CAL"
                                                "AMR."
[13]
    "AMGN" "GILD" "CELG" "GENZ"
                                       "BIIB"
                                                "CAT"
[19]
    "DE"
                              "MR.O"
          "HIT" "IMO"
                                       "HES"
                                                "YPF"
[25] "<sup>^</sup>GSPC"
> ind <- stock94Info$industry # for later</pre>
```

- > theData <- getReturns(ticker,</pre>
- + start="2004-09-01", end="2009-09-01")

The print, summary, and plot methods can be applied to theData.

Types of investments

Other investments also exist, and the stockPortfolio takes into account: risk-free investments and short selling.

- Argument name in stockPortfolio: Rf. The value of Rf is standardized for the period, e.g. 3% annual return equates to setting Rf=0.0025 for monthly data.
- Short selling will be referred to via shortSelling in function arguments, and it takes values "y" and "n".

	Modeling stocks	
	•0000	

Modeling stocks

There are four models offered:

- Constant correlation model (CCM). Smooth Σ and then do variance covariance method.
- Multigroup model (MGM). Compromise strategy: do some smoothing on Σ (less than CCM) and then optimize.
- Single index model (SIM). Use a linear model to analyze stock behavior, where we regress stock returns against some stock index.

	Modeling stocks	
	0000	

Implementation

The 25th ticker – the S&P500 – is dropped for the first three models.

- > model1 <- stockModel(theData, drop=25)</pre>
- > model2 <- stockModel(theData, drop=25, model="CCM")</pre>
- > model3 <- stockModel(theData, drop=25, model="MGM",</pre>
- + industry=ind)
- > model4 <- stockModel(theData, model="SIM", index=25)</pre>

By default, Rf=0 and shortSelling="y". Short selling is always permitted when the model is the variance-covariance or multigroup model.

	Modeling stocks	
	00000	

Single index model

The *Single Index Model* is the most well-known of the four models. If R_M describes the returns of the stock index (S&P500) and R_i describes the returns of stock *i*, then the linear model that relates the two:

$$R_i = \alpha_i + \beta_i R_M + \epsilon_i$$

where α_i and β_i are constants and ϵ_i is a vector of the model errors for stock *i*. Example where no short selling is permitted:

- > sim <- stockModel(theData, model="SIM", index=25,</pre>
- + industry=ind, shortSelling="n")

Finding the optimal portfolio

For any model, the goal is to minimize risk while maximizing return. There is a single function to identify the optimal portfolio of a model: optimalPort.

The first argument is an output of stockModel. The next two arguments permit adjustments to the model (Rf and shortSelling). > simOP <- optimalPort(sim)</pre>

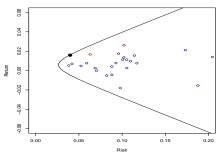
> summary(simOP)
Model: single index model
Expected return: 0.0159
Risk estimate: 0.0399

> simOP
... same output as above ...
Portfolio allocation:
...

	Modeling stocks	
	00000	

Visualization of optimal portfolio

The optimal stock portfolio is shown by the black dot on the efficient frontier when no short selling is permitted. Allocation shown by heat coloring.

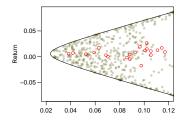

> plot(simOP, xlim=c(0,0.2),

▲ロト ▲圖ト ▲屋ト ▲屋ト

3

- + ylim=0.06*c(-1,1))
- > portPossCurve(sim, 10,
- + add=TRUE)

Risk and Return of Stocks

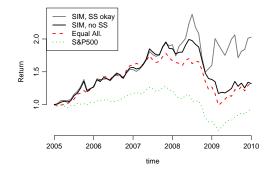

David Diez, Nicolas Christou

	Modeling stocks	
	00000	

Other topics

Finding the optimal allocation using one of the models would be a relatively simple task using getReturns, stockModel, and optimalPort. What was not covered:

- Finer details of the models.
- Comparison of models (testPort is useful in this respect).
- Creation of portfolio clouds (portCloud) and portfolio possibilities curves (portPossCurve).



イロト イポト イヨト

	Modeling stocks	

Example of testPort

Before farewells, a brief examination of the utility of these models (using testPort).

