

# Data Management Challenges in Quant Research:

## Solutions from OneTick and R

Maria Belianina, Ph.D.

Director, Pre-Sales Engineering Support

## **Contents**

- Data Management Challenges in Quant Research
- □ R and OneTick: Addressing the challenges
  - What is OneTick
  - Leveraging strong points of OneTick and R
  - OneTick data pre-processing and R analytics
  - R → OneTick integration: 2 methods
- □ Examples
  - Bring OneTick Queries or Raw Data into R environment
  - Use R Functions in OneTick queries

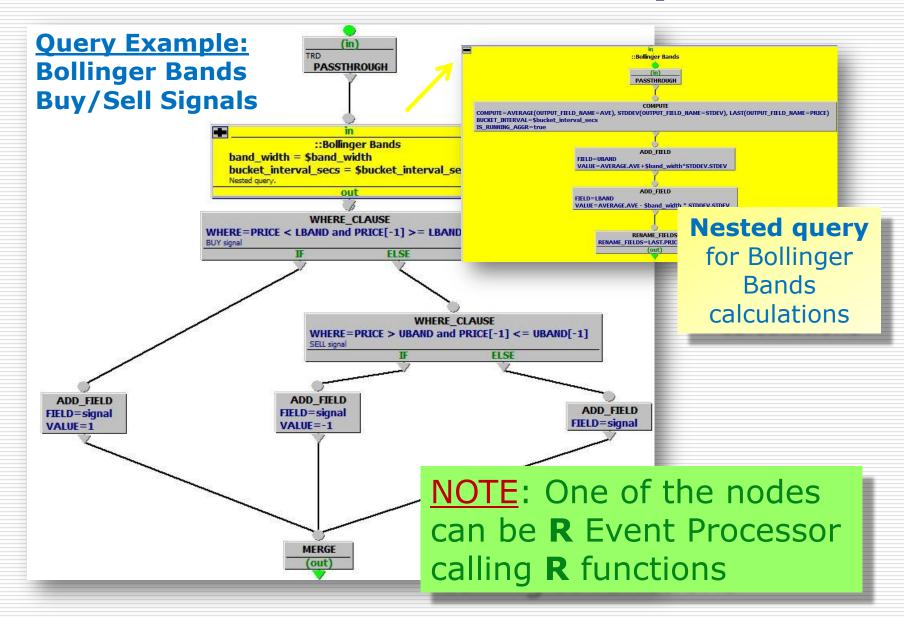
## Data Management Challenges

Getting, storing and processing market data for quantitative research became more demanding as we face:

- Increasing data granularity
  - Daily to intraday
  - Milli → Micro → Nano → Picoseconds...
- □ Data cleansing challenges
- □ Complexity of data and data consolidation
  - Order book analytics
  - Order books vs Trades vs Custom and Summary data

- ☐ Increasing data volumes
- □ Reference data (corporate actions, name changes, continuous contracts, etc)
- ☐ Security master maintenance
- Database schema changes

Reporting and analytics vs all of the above




## R AND ONETICK: ADDRESSING THE CHALLENGES

## What is OneTick: Overview

- Data feed adapters, collectors and normalization
- ✓ Unlimited time series storage for any security types and any tick types
- ✓ In-memory database for intraday ticks
- Complex Event Processing (CEP) engine for real time analysis & signal generation
- ✓ GUI with sophisticated <u>extendable</u> analytics that can be integrated with R & MatLab
- ✓ API (C++, C#, Java, Perl)

## What is OneTick: GUI Analytics



## What is OneTick: GUI Analytics

Query Example: Bollinger Bands Buy/Sell Signals



| Symbol   | Time                    | AVERAGE.AVE     | STDDEV.STDEV   | PRICE            | UBAND            | LBAND           | signal |    |
|----------|-------------------------|-----------------|----------------|------------------|------------------|-----------------|--------|----|
| O::MSFT. | 2010/03/01 15:25:45.065 | 28.580000000000 | 0.000000000000 | 28.580000000000  | 28.580000000000  | 28.580000000000 | 0      | CI |
| O::MSFT. | 2010/03/01 15:25:45.066 | 28.580000000000 | 0.000000000000 | 28.580000000000  | 28.580000000000  | 28.580000000000 | 0      | CI |
| O::MSFT. | 2010/03/01 15:25:45.075 | 28.580000000000 | 0.000000000000 | 28.580000000000  | 28.5800000000000 | 28.580000000000 | 0      | CI |
| O::MSFT. | 2010/03/01 15:25:45.117 | 28.580000000000 | 0.000000000000 | 28.580000000000  | 28.5800000000000 | 28.580000000000 | 0      | CI |
| O::MSFT. | 2010/03/01 15:25:45.257 | 28.584000000000 | 0.008000000000 | 28.6000000000000 | 28.584080000000  | 28.583920000000 | -1     | CI |
| O::MSFT. | 2010/03/01 15:25:45.281 | 28.58666666666  | 0.009428090415 | 28.600000000000  | 28.586760947570  | 28.586572385762 | 0      | CI |
|          |                         |                 |                |                  |                  |                 |        |    |

**NOTE**: Query can be called from **R** passing this output to **R** vector

## **OneTick and Market Data Management**

| Market Data<br>Challenges                                                                                    | OneTick Solution For All Security Types Include                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>Increasing volumes</li><li>History vs Real Time</li></ul>                                            | <ul> <li>Archives are <u>compressed</u>, <u>distributed</u>, <u>scalable</u></li> <li><u>Intraday in-memory</u> DB+ <u>CEP Real-time</u> + <u>Archives</u></li> </ul>                                                                                               |
| <ul><li>Increasing granularity</li><li>Changing schemas</li><li>Reference data</li><li>Master data</li></ul> | <ul> <li>Time series: <u>flexible schema</u> &amp; <u>nanoseconds</u></li> <li><u>Optimized summary DBs</u> for low frequency data</li> <li><u>Reference data</u> design/analytics (naming continuity, contract rollovers, calendars, corporate actions)</li> </ul> |
| Data cleansing                                                                                               | <ul> <li>Normalization rules start the <u>cleansing process</u></li> <li>Data can be <u>updated or deleted by queries</u></li> <li>Parts of archives &amp; in-memory DB can be updated</li> </ul>                                                                   |
| <ul><li>Complexity</li><li>Consolidation</li><li>Order books</li></ul>                                       | <ul> <li>Built-in <u>order book storage and analytics</u></li> <li>Order book data can be <u>joined or merged</u> with any other kind of data within analytical queries</li> <li>Join data for derivatives and underlyers</li> </ul>                                |
| <ul> <li>Reporting &amp; analytics vs all of the above</li> </ul>                                            | <ul> <li>Rich GUI and API analytics</li> <li>DB structure is transparent to queries</li> <li>Queries for 1,000s of symbols &amp; multiple sources</li> <li>Integration: R, MatLab, SAS, C++, Java, Perl</li> </ul>                                                  |

## **System Integration: OneTick and R**

|                             | OneTick allows to:                                                                                                                                                                                                                                                                          | R allows to:                                                                                                                                                                                                                                               |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If you work in R:           | Pre-process data in OT:  ✓ Normalize and clean data  ✓ Apply reference data  ✓ Aggregate or intervalize irregular time series  ✓ JOIN or MERGE trades with order books, news, etc  ✓ Use OT functions to preprocess  ✓ Parameterize queries                                                 | <ul> <li>✓ Retrieve OT query output in R code via ODBC/OneTick SQL:         <ul> <li>Call tested OT query</li> <li>Pass parameters</li> <li>Results go into an R vector</li> </ul> </li> <li>✓ Limit amount of data processed within ODBC and R</li> </ul> |
| If you work in OneTick GUI: | <ul> <li>✓ [All of the above]</li> <li>✓ Call any number of OT/R functions</li> <li>✓ Call separate R functions for the same tick bucket for bucket entry or exit events</li> <li>✓ Run historical or CEP queries</li> <li>✓ View query results in GUI grid or chart, or via API</li> </ul> | <ul> <li>✓ Map OneTick fields to R parameters</li> <li>✓ Map R output back to OneTick fields for further OneTick query processing</li> <li>Tip: Take full advantage of both packages.</li> </ul>                                                           |



## **Integration Method 1**:

# ONETICK QUERY RESULTS → BACK TO R

#### OneTick Results Back to R: Overview

Prerequisites: OneTick client setup

Connection: OneTick ODBC Driver

Syntaxes: OneTick SQL (based on SQL)

## **OneTick Query prep steps:**

- ✓ Design query graph with OneTick GUI
- ✓ Create query parameters to be passed from R
- ✓ Test and save the query

Results: R vector

Via OT ODBC + SQL call with parameters

#### OneTick Results Back to R: Overview

P TIP:
Pack logic and analytics
into OneTick query
to take advantage of OneTick Server,
and
to limit network traffic and
a number of returned ticks
Create query parameters to be passed from R

✓ Test and save the query

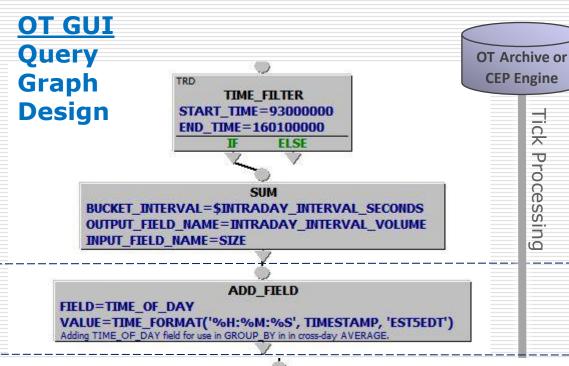
**Results:** R vector Via OT ODBC + SQL call with parameters

## **OneTick Results Back to R: Example**

#### **Sample Business Case:**

I. OneTick Query must produce: Running liquidity profile (average daily volume over X past days) grouped by "Time of Day". E.g., average 5-day volume for 9:30 – 10:30, timestamp'ed by the 5<sup>th</sup> day

Source trade data: 1 month, 1 symbol


II. Results → Back to R
for plotting and further processing

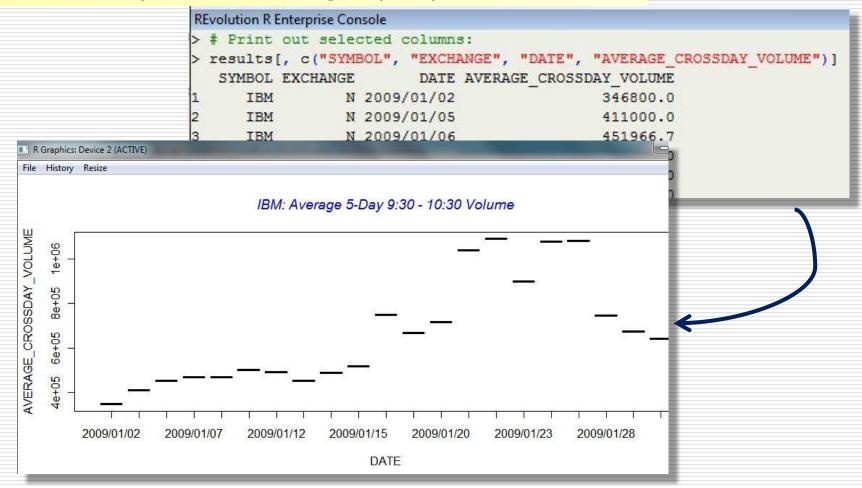
### OneTick Results Back to R: Design OT Query

를 웃

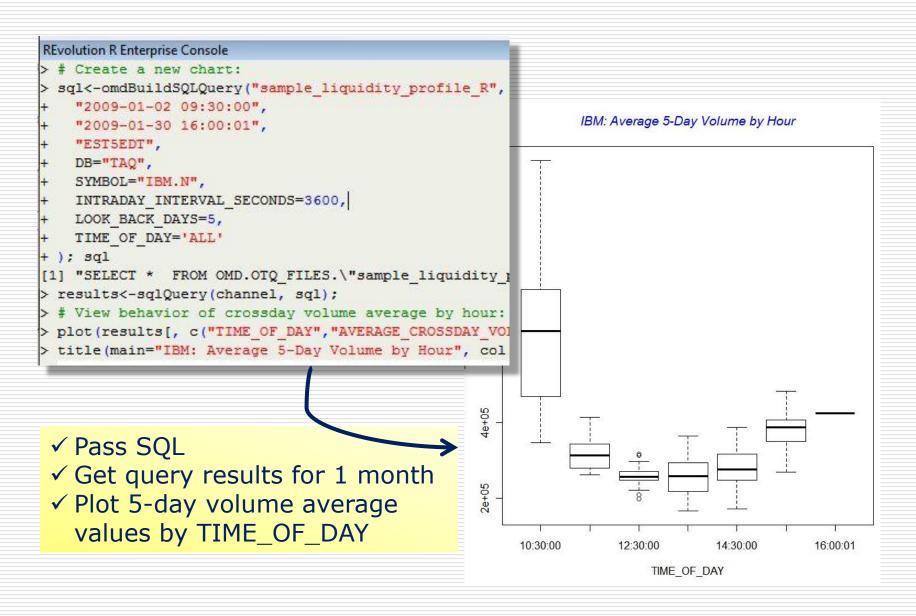
Pro

essing




#### Approach & OT Steps

- Retrieve trades, filter
- Calculate VOLUMEs for all INTRADAY NTERVALS (in seconds)
- Add TIME OF DAY fields to be used for grouping
- **AVERAGE** BUCKET INTERVAL=\$LOOK BACK DAYS **BUCKET INTERVAL UNITS=TICKS** IS RUNNING AGGR=true ALL FIELDS FOR SLIDING=true OUTPUT FIELD NAME=AVERAGE CROSSDAY VOLUME GROUP BY=TIME OF DAY INPUT FIELD NAME=INTRADAY INTERVAL VOLUME 2 levels of grouping: time buckets and group\_by TIME\_OF\_DAY. RUNNING AVERAGE will have as input \$LOOK BACK DAYS ticks with VOLUMES from the corresponding TIME OF DAY,
- running AVERAGE - for each TIME OF DAY - over LOOK BACK DAYS for **LIQUIDITY PROFILE** for each day in query date range
- **Test** query in GUI


Calculate

#### **OneTick Results Back to R: Results 1**

- ✓ Pass SQL
- ✓ Get query results for 1 month, 9:30 10:30 only
- ✓ Plot 5-day volume average by day



#### OneTick Results Back to R: Results 2





## **Integration Method 2**:

# ONETICK QUERY ↔ R FUNCTIONS

### R Functions in OneTick Queries: Overview

Prerequisites: R or REvolution R installation on the OneTick server (depends on OS)

**Connection**: Using standard **R** DLL

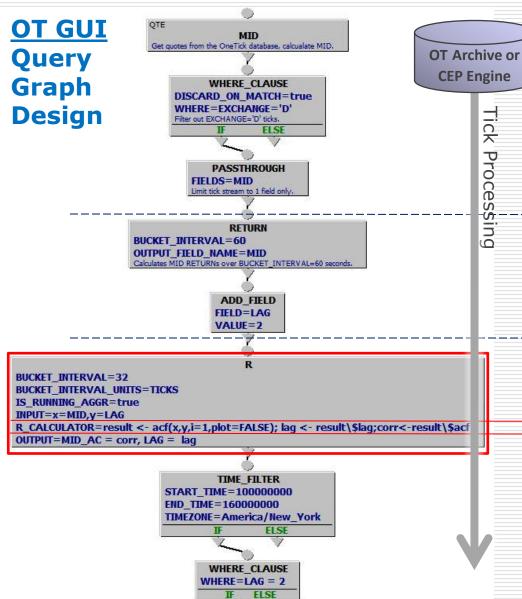
Syntaxes: OneTick GUI and R expressions

Input: OneTick Archive or real-time tick timeseries from a single or multiple data sources

Output: OneTick query results (timeseries defined by the query design)

Query Types: Historical or Continuous CEP

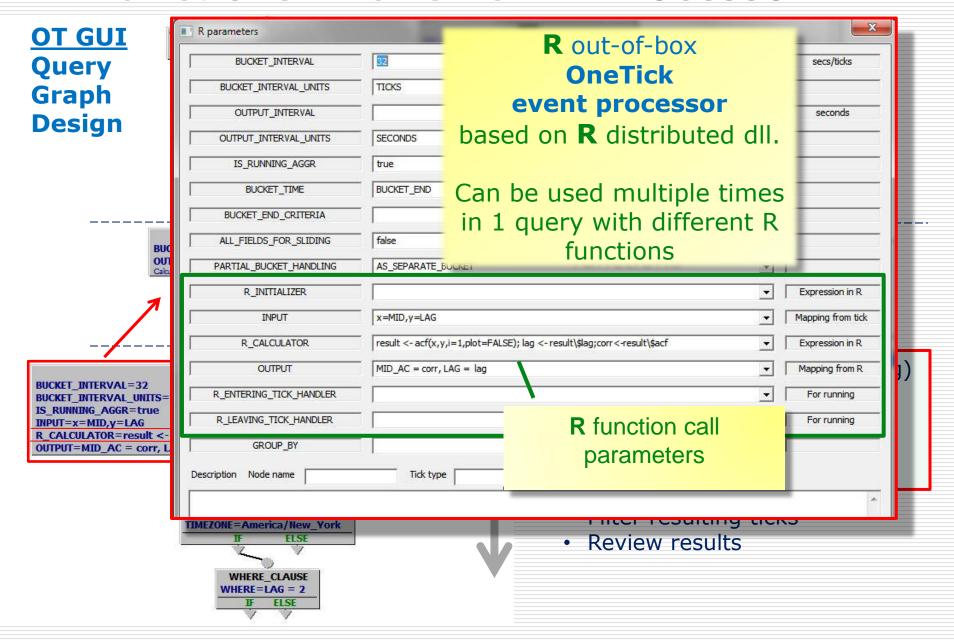
## R Functions in OneTick: Example 1


## **Business Case:**

Find serial **autocorrelation** of 30 one-minute returns with lag of 2

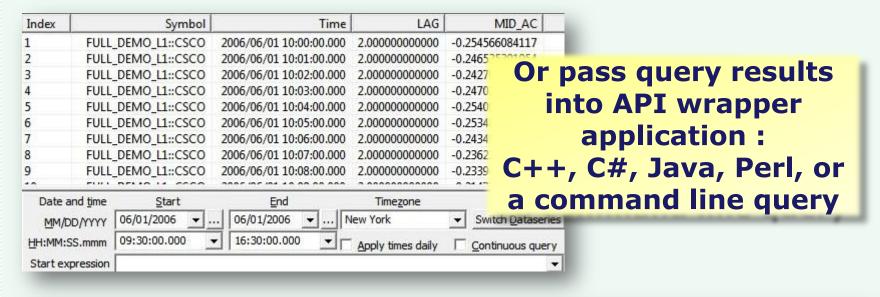
#### **R** Function:

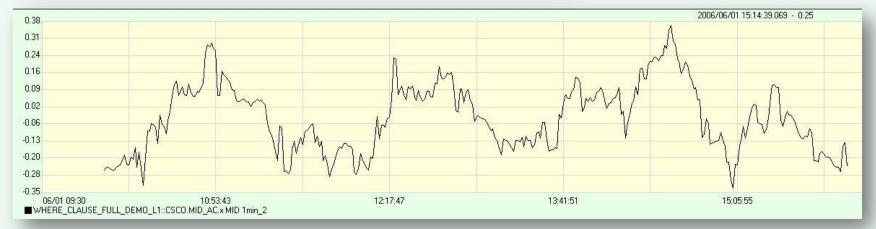
acf, an autocorrelation function


## R Functions in OneTick: Design Query



#### **Approach & OT Steps**


- Retrieve quote ticks for any number of symbols
- Add tick by tick MID calculation
- Filter ticks
- Aggregate ticks every 60 seconds
- Calculate RETURN(MID)
- Add LAG field to each tick
- Create running (a.k.a. sliding) aggregation of 32 ticks
- Call R function acf(...)
   for each sliding group
- Pass values of MID and LAG
- Filter resulting ticks
- Review results


#### R Functions in OneTick: R Processor



## R Functions in OneTick: Query Output

### View OT Query results in a GUI grid or chart





#### R Functions in OneTick: R Parameters

#### **2 subsets of parameters** that work together:

| OneTick aggregation                                                                                                                        | R function specifications                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| BUCKET_INTERVAL, UNITS and optional GROUP_BY to aggregate ticks into buckets                                                               | <b>R_INITIALIZER</b> to specify one time only initial command                                                                  |
| OUTPUT_INTERVAL and UNITS to define frequency of output for running calculations                                                           | INPUT, OUTPUT, R_CALCULATOR to map tick fields to R variables and specify R command                                            |
| <pre>IS_RUNNING = true/false for running (a.k.a. sliding) calculations  Other parameters for additional flexibility with aggregation</pre> | R_ENTERING/LEAVING_ TICK_HANDLER to call different functions for BUCKET_INTERVAL entry and exit events in RUNNING aggregations |

#### **Result:**

R functions in OneTick queries at any level of granularity, with OneTick processing and aggregating large datasets, for any number of symbols, in historical or real time queries.



## Q&A

## **Contact:**

Dr. Maria Belianina maria.belianina@onetick.com support@onetick.com