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Motivation

For illustration assume that a leader of a party is facing an
upcoming election. He or she might be interessted in tracking the
general sentiment about the parties in the target population via
analyzing political media coverage in order to improve his or her
campaign accordingly1.

The New York Stock Exchange (NYSE) processes and stores a
massive amount of data during trading days. Many news agencies
like Reuters, Bloomberg, and further publishers provide news and
stories partly in structured form through RSS feeds or grant paying
customers access to their news databases.

Text mining might help to extract interesting patterns from news
available on the Web.

1For the 2004 US Presidential Election, Scharl and Weichselbraun (2008)
developed a webmining tool to analyze about half a million documents in
weekly intervals.



Text Mining



Text Mining

I Highly interdisciplinary research field utilizing techniques from
computer science, linguistics, and statistics

I Vast amount of textual data available in machine readable
format:

I Content of Websites (Google, Yahoo, etc.)
I Scientific articles, abstracts, books, etc. (CiteSeerX Project,

Epub Repositories, Gutenberg Project, etc.)
I News feeds (Reuters and other news agencies)
I Memos, letters, etc.
I blogs, forums, mailing lists, Twitter etc.

I Steady increase of text mining methods (both in academia as
in industry) within the last decade



Text Mining in R

I tm Package
I Tailored for

I Plain texts, articles and papers
I Web documents (XML, SGML, etc.)
I Surveys

I Available transformations: stemDocument(),
stripWhitespace(), tmTolower(), etc.

I Methods for
I Clustering
I Classification
I Visualization

I Feinerer (2010) and Feinerer et al. (2008)



Text Mining in R

Components of a text mining framework, in particular tm:

I Sources which abstract input locations (DirSource(),
VectorSource(), etc.)

I Readers (readPDF(), readPlain(), readXML(), etc.)

I A (PlainText-) Document contains contents of the document
and meta data

I A corpus contains one or several documents and corpus-level
meta data (abstract class in R)

Pre-constructed corpora are available from
http://datacube.wu.ac.at.

E.g., Reuters21578:
install.packages("tm.corpus.Reuters21578", repos =

"http://datacube.wu.ac.at")

http://datacube.wu.ac.at


Functions and Methods

Display The print() and summary() convert documents to
a format so that R can display them. Additional
meta information can be shown via summary().

Length The length() function returns the number of
documents in the corpus.

Subset The [[ operator must be implemented so that
individual documents can be extracted from a corpus.

Apply The tm_map() function which can be conceptually
seen as an lapply() implements functionality to
apply a function to a range of documents.



Example: Handling Corpora in R

> library("tm")

> corpus <- Corpus(DirSource("Data/reuters"), list(reader = readReut21578XML))

> library("tm.corpus.Reuters21578")

> data(Reuters21578)

> Reuters21578

A corpus with 21578 text documents

> length(Reuters21578)

[1] 21578

> Reuters21578[[3]]

Texas Commerce Bancshares Inc's Texas

Commerce Bank-Houston said it filed an application with the

Comptroller of the Currency in an effort to create the largest

banking network in Harris County.

The bank said the network would link 31 banks having

13.5 billion dlrs in assets and 7.5 billion dlrs in deposits.

Reuter



Preprocessing

Stemming:

I Erasing word suffixes to retrieve their radicals

I Reduces complexity almost without loss of information

I Stemmers provided in packages Rstem1 and
Snowball2(preferred) based on Porter (1980)

I Function stemDocument()

Stopword removal:

I Words with a very low entropy

I Based on base function gsub()

I Function removeWords()

I Removal of whitespace (stripWhitespace()) and
punctuation (removePunctuation()) work similar

1Duncan Temple Lang (version 0.3-1 on Omegahat)
2Kurt Hornik (version 0.0-7 on CRAN)



Example: Preprocessing

> stemmed <- tm_map(Reuters21578[1:5], stemDocument)

> stemmed[[3]]

Texa Commerc Bancshar Inc Texas

Commerc Bank-Houston said it file an applic with the

Comptrol of the Currenc in an effort to creat the largest

bank network in Harri County.

The bank said the network would link 31 bank having

13.5 billion dlrs in asset and 7.5 billion dlrs in deposits.

Reuter

> removed <- tm_map(stemmed, removeWords, stopwords("english"))

> removed[[3]]

Texa Commerc Bancshar Inc Texas

Commerc Bank-Houston file applic

Comptrol Currenc effort creat largest

bank network Harri County.

The bank network link 31 bank

13.5 billion dlrs asset 7.5 billion dlrs deposits.

Reuter



Document-Term Matrices

A very common approach in text mining for actual computation on
texts is to build a so-called document-term matrix (DTM) holding
frequencies of distinct terms tfi ,j , i.e., the term frequency (TF) of
each term ti for each document dj . Its construction typically
involves pre-processing and counting TFs for each document.

tfi ,j = ni ,j

where ni ,j is the number of occurrences of the considered term i in
document j .

DTMs are stored using a simple sparse (triplet) representation
implemented in package slam by Hornik et al. (2010).



Document-Term Matrices

I Counting TFs is problematic regarding relevancy in the corpus

I E.g., (stemmed) terms like signatures occurs in almost all
documents in the corpus

I Typically, the inverse document frequency (IDF) is used to
suitably modify the TF weight by a factor that grows with the
document frequency df

idfi = log
N

dfi

I Combining both, the TF and IDF weighting we get the term
frequency - inverse document frequency (tf -idf )

tf -idfi ,j = tfi ,j × idfi



Example: Document-Term Matrices
> Reuters21578_DTM <- DocumentTermMatrix(Reuters21578, list(stemming = TRUE,

+ removePunctuation = TRUE))

> data(Reuters21578_DTM)

> Reuters21578_DTM

A document-term matrix (21578 documents, 33090 terms)

Non-/sparse entries: 877918/713138102

Sparsity : 100%

Maximal term length: 30

Weighting : term frequency (tf)

> inspect(Reuters21578_DTM[51:54, 51:54])

A document-term matrix (4 documents, 4 terms)

Non-/sparse entries: 0/16

Sparsity : 100%

Maximal term length: 10

Weighting : term frequency (tf)

Terms

Docs abdul abdulaziz abdulhadi abdulkadir

51 0 0 0 0

52 0 0 0 0

53 0 0 0 0

54 0 0 0 0



Challenges

I Data volumes (corpora) become bigger and bigger

I Many tasks, i.e. we produce output data via processing lots of
input data

I Processing large data sets in a single machine is limited by the
available main memory (i.e., RAM)

I Text mining methods are becoming more complex and hence
computer intensive

I Want to make use of many CPUs

I Typically this is not easy (parallelization, synchronization, I/O,
debugging, etc.)

I Need for an integrated framework

I preferably usable on large scale distributed systems

→ Main motivation: large scale data processing



Distributed Text Mining in R

Data sets:

I Reuters-21578 : one of the most widely used test collection for
text categorization research (news from 1987)

I NSF Research Award Abstracts (NSF): consists of 129, 000
plain text abstracts describing NSF awards for basic research
submitted between 1990 and 2003. It is divided into three
parts.

I Reuters Corpus Volume 1 (RCV1): > 800.000 text documents

I New York Times Annotated Corpus (NYT): > 1.8 million
articles articles published by the New York Times between
1987-01-01 and 2007-06-19

# documents corpus size [MB]1 size DTM [MB]
Reuters-21578 21, 578 87 16.4
NSF (Part 1) 51, 760 236 101.4
RCV1 806, 791 3, 800 1130.8
NYT 1, 855, 658 16, 160 NA

1calculated with the Unix tool du



Opportunities

I Distributed computing environments are scalable in terms of
CPUs and memory (disk space and RAM) employed.

I Multi-processor environments and large scale compute
clusters/clouds available for a reasonable price

I Integrated frameworks for parallel/distributed computing
available (e.g., Hadoop)

I Thus, parallel/distributed computing is now easier than ever

I R already offers extensions to use this software: e.g., via hive,
RHIPE, nws, iterators, multicore, Rmpi, snow, etc.

Employing such systems with the right tools we can significantly
reduce runtime for processing large data sets.



Distributed Text Mining in R



Distributed Text Mining in R

Difficulties:

I Large data sets

I Corpus typically loaded into memory

I Operations on all elements of the corpus (so-called
transformations)

Strategies:

I Text mining using tm and MapReduce/hive1

I Text mining using tm and MPI/snow2

1Stefan Theußl (version 0.1-2)
2Luke Tierney (version 0.3-3)



The MapReduce Programming Model

I Programming model inspired by functional language
primitives

I Automatic parallelization and distribution

I Fault tolerance

I I/O scheduling

I Examples: document clustering, web access log analysis,
search index construction, . . .

I Dean and Ghemawat (2004)

Hadoop (http://hadoop.apache.org/core/) developed by
the Apache project is an open source implementation of
MapReduce.

http://hadoop.apache.org/core/


The MapReduce Programming Model

Local Data Local Data Local Data

Distributed Data

Map Map Map

Partial Result Partial Result Partial Result

Intermediate Data

Reduce Reduce

Aggregated Result

Figure: Conceptual Flow



The MapReduce Programming Model

A MapReduce implementation like Hadoop typically
provides a distributed file system (DFS, Ghemawat et al., 2003):

I Master/worker architecture (Namenode/Datanodes)

I Data locality

I Map tasks are applied to partitioned data

I Map tasks scheduled so that input blocks are on same machine

I Datanodes read input at local disk speed

I Data replication leads to fault tolerance

I Application does not care whether nodes are OK or not



Hadoop Streaming

I Utility allowing to create and run MapReduce jobs with any
executable or script as the mapper and/or the reducer

$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar

I -input inputdir

I -output outputdir

I -mapper ./mapper

I -reducer ./reducer

Local Data Intermediate Data Processed Data

R: Map

stdin() stdout()

R: Reduce

stdin() stdout()



Hadoop InteractiVE (hive)

hive provides:

I Easy-to-use interface to Hadoop

I Currently, only Hadoop core
(http://hadoop.apache.org/core/) supported

I High-level functions for handling Hadoop framework
(hive_start(), hive_create(), hive_is_available(),
etc.)

I DFS accessor functions in R (DFS_put(), DFS_list(),
DFS_cat(), etc.)

I Streaming via Hadoop (hive_stream())

I Available on R-Forge in project RHadoop

http://hadoop.apache.org/core/


Example: Word Count

Data preparation:

1 > library("hive")

2 Loading required package: rJava

3 Loading required package: XML

4 > hive_start()

5 > hive_is_available ()

6 [1] TRUE

7 > DFS_put("~/Data/Reuters/minimal", "/tmp/Reuters")

8 > DFS_list("/tmp/Reuters")

9 [1] "reut -00001. xml" "reut -00002. xml" "reut -00003. xml"

10 [4] "reut -00004. xml" "reut -00005. xml" "reut -00006. xml"

11 [7] "reut -00007. xml" "reut -00008. xml" "reut -00009. xml"

12 > head(DFS_read_lines("/tmp/Reuters/reut -00002. xml"))

13 [1] "<?xml version =\"1.0\"?>"

14 [2] "<REUTERS TOPICS =\"NO\" LEWISSPLIT =\"TRAIN\" [...]

15 [3] " <DATE >26-FEB -1987 15:03:27.51 </DATE >"

16 [4] " <TOPICS/>"

17 [5] " <PLACES >"

18 [6] " <D>usa </D>"



Distributed Text Mining in R

Solution:

1. Distributed storage
I Data set copied to DFS (‘DistributedCorpus’)
I Only meta information about the corpus remains in memory

2. Parallel computation
I Computational operations (Map) on all elements in parallel
I MapReduce paradigm
I Work horses tm_map() and TermDocumentMatrix()

Processed documents (revisions) can be retrieved on demand.

Implemented in a “plugin” package to tm: tm.plugin.dc.



Distributed Text Mining in R
> library("tm.plugin.dc")

> dc <- DistributedCorpus(DirSource("Data/reuters"),

+ list(reader = readReut21578XML) )

> dc <- as.DistributedCorpus(Reuters21578)

> summary(dc)

A corpus with 21578 text documents

The metadata consists of 2 tag-value pairs and a data frame

Available tags are:

create_date creator

Available variables in the data frame are:

MetaID

--- Distributed Corpus ---

Available revisions:

20100417144823

Active revision: 20100417144823

DistributedCorpus: Storage

- Description: Local Disk Storage

- Base directory on storage: /tmp/RtmpuxX3W7/file5bd062c2

- Current chunk size [bytes]: 10485760

> dc <- tm_map(dc, stemDocument)



Distributed Text Mining in R
> print(object.size(Reuters21578), units = "Mb")

109.5 Mb

> dc

A corpus with 21578 text documents

> dc_storage(dc)

DistributedCorpus: Storage

- Description: Local Disk Storage

- Base directory on storage: /tmp/RtmpuxX3W7/file5bd062c2

- Current chunk size [bytes]: 10485760

> dc[[3]]

Texas Commerce Bancshares Inc's Texas

Commerce Bank-Houston said it filed an application with the

Comptroller of the Currency in an effort to create the largest

banking network in Harris County.

The bank said the network would link 31 banks having

13.5 billion dlrs in assets and 7.5 billion dlrs in deposits.

Reuter

> print(object.size(dc), units = "Mb")

0.6 Mb



Constructing DTMs via MapReduce

I Parallelization of transformations via tm_map()

I Parallelization of DTM construction by appropriate methods

I Via Hadoop streaming utility (R interface hive_stream())

I Key / Value pairs: docID / tmDoc (document ID, serialized
tm document)

I Differs from MPI/snow approach where an lapply() gets
replaced by a parLapply()



Constructing DTMs via MapReduce

1. Input: <docID, tmDoc>

2. Preprocess (Map): <docID, tmDoc> → <term, docID, tf>

3. Partial combine (Reduce): <term, docID, tf> → <term,
list(docID, tf)>

4. Collection: <term, list(docID, tf)> → DTM



Distributed Text Mining in R

Infrastructure:

bignode.q – 4 nodes
2 Dual Core Intel XEON 5140 @ 2.33 GHz
16 GB RAM

node.q – 68 nodes
1 Intel Core 2 Duo 6600 @ 2.4 GHz
4 GB RAM

This is a total of 152 64-bit computation nodes and a total of 336
gigabytes of RAM.
MapReduce framework:

I Hadoop 0.20.1 (implements MapReduce + DFS)

I R (2.10.1) with tm (0.5-2) and hive (0.1-2)

I Code implementing ‘DistributedCorpus’ in (tm.plugin.dc)



Benchmark
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Figure: Runtime in seconds for stemming, stopword removal, and
whitespace removal on the full Reuters-21578 data set (above) and on
part 1 of the NSF data set (below) utilizing either Hadoop (red) or MPI
(black) with up to 16 processing cores.



Outlook and Conclusion



Outlook - Computing on Texts
> library("slam")

> cs <- col_sums(Reuters21578_DTM)

> (top20 <- head(sort(cs, decreasing = TRUE), n = 20))

mln dlrs reuter pct compani bank billion share cts market

25513 20528 19973 17013 11396 11170 10240 9627 8847 7869

price trade inc net stock corp loss rate sale oper

6944 6865 6695 6070 6050 6005 5719 5406 5138 4699

> DTM_tfidf <- weightTfIdf(Reuters21578_DTM)

> DTM_tfidf

A document-term matrix (21578 documents, 33090 terms)

Non-/sparse entries: 877918/713138102

Sparsity : 100%

Maximal term length: 30

Weighting : term frequency - inverse document frequency (normalized) (tf-idf)

> cs_tfidf <- col_sums(DTM_tfidf)

> cs_tfidf[names(top20)]

mln dlrs reuter pct compani bank billion share

780.2629 544.7084 103.8984 455.8033 347.4688 355.8040 388.7671 421.8325

cts market price trade inc net stock corp

1119.2683 217.8757 235.4840 216.8312 341.8051 572.6022 290.0943 292.2116

loss rate sale oper

552.9568 197.7876 320.2611 253.8356



Outlook - Sentiment Analysis

I Compute sentiment scores based on e.g., daily news

I Use (normalized) TF-IDF scores

I Currently General Inquirer tag categories are employed
(provided in package tm.plugin.tags)

I Construct time series of tagged documents
> library("tm.plugin.tags")

> head(tm_get_tags("Positiv", collection = "general_inquirer"))

[1] "abide" "ability" "able" "abound" "absolve" "absorbent"

I Compare with time series of interest (e.g., of a financial
instrument)



Outlook - Sentiment Analysis
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sentiment scores, and the stock price of CBT.



Conclusion - tm and Hadoop

I Use of Hadoop in particular the DFS enhances handling of
large corpora

I Significant speedup in text mining applications

I Thus, MapReduce has proven to be a useful abstraction

I Greatly simplifies distributed computing

I Developer focus on problem
I Implementations like Hadoop deal with messy details

I different approaches to facilitate Hadoop’s infrastructure
I language- and use case dependent



Conclusion - Text Mining in R
The complete text mining infrastructure consists of many
components:

I tm, text mining package (0.5-3.2, Feinerer, 2010)

I slam, sparse lightweigt arrays and matrices (0.1-11, Hornik
et.al., 2010)

I tm.plugin.dc, distributed corpus plugin (0.1-2, Theussl and
Feinerer, 2010)

I tm.plugin.tags, tag category database (0.0-1, Theussl, 2010)

I hive, Hadoop/MapReduce interface (0.1-5, Theussl and
Feinerer, 2010)

Two of them are are released on CRAN (tm, slam), two are
currently in an advanced development stage on R-Forge in project
RHadoop (hive, tm.plugin.dc), and one will be released shortly
(tm.plugin.tags).

I Eventually, combine everything in a news mining package



Thank You for Your Attention!

Stefan Theußl
Institute for Statistics and Mathematics
email: Stefan.Theussl@wu.ac.at

URL: http://statmath.wu.ac.at/~theussl

WU Vienna
Augasse 2–6, A-1090 Wien
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