Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks

R in Finance Friday, April 29th, 2011

MUTUALLY EXCITING HAWKES PROCESSES FOR THE MICROSTRUCTURE NOISE MODELING

Clément Dunand-Châtellet (PhD student)

Ecole Polytechnique, Palaiseau, France

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks

2 MODEL

3 NUMERICAL VALIDATION

REAL LIFE EXAMPLE

S CONCLUSION AND OUTLOOKS

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks

INTRODUCTION

PROPERTIES OF EARTHQUAKES

- Irregularly spaced in time, clustering of erthquakes
- Stochastic magnitude of main shock
- Correlations between main shock and aftershocks: Omori's Law
- Correlation in space between different areas of the Earth crust

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
000000				
Earthquake's modeling				

MODELING EARTHQUAKES WITH HAWKES PROCESSES

- Point process with conditional intensity
- Background activity
- Correlations between areas A and B

HAWKES PROCESSES

5/31

$$\lambda_A(t|Ht) = \mu + \sum_{t < t_i} \phi(t - t_i) + \sum_{t < t_j} \psi(t - t_j) + Periodic \quad functions$$
(1)

- λ: Conditional intensity
- μ: Background activity
- ϕ : Response function of a shock from region A at time t_i
- ψ : Response function of a shock from region B at time t_j

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
000000				
Conditional intensity				

FIGURE 1: Conditional intensity

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
0000000				
Some similarities ?				

HIGH FREQUENCY DATA

- Irregular spacing of data in time, clustering of orders Irregular spacing of earthquakes
- Discrete nature of price variations tick data Discrete variations of magnitudes
- Autocorrelation of assets Main Shock and aftershocks
- Cross correlation between assets Regions A and B

 \Rightarrow Prices are point processes living on a tick grid

FIGURE 2: Discrete nature of prices of FBund the 07th of december 2009 (maturity 03/2010)

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
0000000				
Aim of work				

OBJECTIVES

- Estimate realized volatility at high frequency
- Estimate correlations between assets at high frequency
- Design a cross scale model

CONSTRAINTS

- Realized volatility is not stable at fine scale
- Strong mean reversion at very small scales
- Correlations between assets vanish at small scales

TOOLS

- Volatility: Signature plot
- Mean reversion: histograms
- Correlations: Epps effect

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
0000000				
Signature Plot				

FIRST STYLIZED FACT: SIGNATURE PLOT (ANDERSEN [2])

• Definition: the realized volatility over a period [0, T] at scale τ

X(t): price of the asset at time t (last traded, mid price, ...)

$$\hat{V}(\tau) = \frac{1}{T} \sum_{n=0}^{T/\tau} (X((n+1)\tau) - X(n\tau))^2$$
⁽²⁾

Introduction	Model 00000	Numerical Validation	Real Life Example	Conclusion and Outlooks
Epps effect				

SECOND STYLIZED FACT: EPPS EFFECT (EPPS [3])

• **Definition:** A correlation coefficient over a time period [0, T] of price increments of two assets

 $X_1(t)$ and $X_2(t)$: prices of two assets at time t

$$\hat{\rho}(\tau) = \frac{\hat{V}_{12}(\tau)}{\sqrt{\hat{V}_{1}(\tau)\hat{V}_{2}(\tau)}}$$
(3)

where

$$\hat{V}_{12}(\tau) = \frac{1}{T} \sum_{n=0}^{T/\tau} [X_1((n+1)\tau) - X_1(n\tau)] [X_2((n+1)\tau) - X_2(n\tau)]$$
(4)

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks

Model

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ◆ ○ ◆ ○ ◆

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
	0000			
Definition of model				

A "FINE TO COARSE" MODEL [1]

Defined at a microscopic scale (tick-by-tick data modeling by means of marked point processes with appropriate stochastic intensities)

 \Rightarrow 4 key points in the model :

- O Diffuse as a brownian diffusion in large scale (cross scale model)
- Incorporate microstructure noise (mean reversion) through coupled Hawkes processes

- **O** Restriction of parameters to ensure stationarity, non-negativity and stability
- Account for signature plot and Epps effect

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
	00000			
Overview of the model				

THE MUTUALLY EXCITED PRICE MODEL (MEP) IN 1D

$$X(t) = N^{+}(t) - N^{-}(t)$$
(5)

where $N^{\pm}(t)$ are Hawkes processes with random intensities $\lambda^{\pm}(t)$ given by :

$$\lambda^{\pm}(t) = \frac{\mu}{2} + \int_0^t \phi(t-s) dN^{\mp}(s)$$
(6)

where μ is an exogeneous intensity and $\phi(t)$ a mutually exciting kernel

STABILITY CONDITIONS

- $\phi(t) > 0$ and $Supp(\phi) \subset \mathbb{R}_+$ (To ensure non-negativity)
- Stability $\equiv ||\phi||_1$ (X(t) has stationary increments)
- Particular case $\phi(t) = \alpha e^{-\beta t} \mathbf{1}_{\mathbb{R}_+}(t)$ ($||\phi||_1 = \frac{\alpha}{\beta} < 1$ To ensure stationarity and stability)
 - $\alpha > 0$ is a scale parameter
 - $\blacksquare \ \beta > 0$ drives the strength of the time decay

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
	00000			
Conditional intensity				

The more X(t) goes up, the greater the intensity of λ_- The more X(t) goes down, the greater the intensity of λ_+

FIGURE 3: Intensities of λ^+ and $-\lambda^-$

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
	00000			
Theoretical formulae				

Closed form formula for the mean signature plot of the $\ensuremath{\mathsf{MEP}}$ model

• X(t) on [0, T] with initial condition X(0) = 0

$$V(\tau) = \frac{1}{T} \sum_{n=0}^{T/\tau} (X(n\tau + \tau) - X(n\tau))^2$$
(7)

which can be written as :

$$V(\tau) = \mathbb{E}[\hat{V}(\tau)] = \Lambda \left[\psi^2 + (1 - \psi^2) \frac{1 - e^{-\gamma\tau}}{\gamma\tau} \right]$$
(8)
where $\Lambda = \frac{2\mu}{1 - ||\phi||_1}, \quad \psi = \frac{1}{1 + ||\phi||_1}, \quad and \quad \gamma = \alpha + \beta$

• Closed Form formula for the mean Epps effect is too long to be exposed here, but can be computed !

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
	00000			
Overview of the model in 2D				

The mutually excited price model (MEP) in 2D

 $X(t) = N_1(t) - N_2(t)$ and $Y(t) = N_3(t) - N_4(t)$ (9)

where $N_i(t)$ are Hawkes processes with random intensities $\lambda_i(t)$ given by :

$$\lambda_X^{\pm}(t) = \frac{\mu_X^{\pm}}{2} + \int_0^t \phi_{X,X}(t-s) dN_X^{\mp}(s) + \int_0^t \phi_{X,Y}(t-s) dN_Y^{\pm}(s)$$
(10)

and

$$\lambda_Y^{\pm}(t) = \frac{\mu_Y^{\pm}}{2} + \int_0^t \phi_{Y,Y}(t-s) dN_Y^{\pm}(s) + \int_0^t \phi_{Y,X}(t-s) dN_X^{\pm}(s)$$
(11)

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks

NUMERICAL VALIDATION

17/31

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
		0000		
One Hawkes' process				

FIGURE 4: Simulation of a Hawkes' process for $\alpha = 0.024$, $\beta = 0.11$ and $\mu = 0.016$

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
		0000		
Associated signature plot to Hawkes process				

FIGURE 5: Signature Plot computed in link with figure 4

$$\hat{\theta_{reg}} = Argmin_{\theta}|\hat{V}(\tau) - V(\tau)|^2$$
 (12)

• constraints:
$$\mu>0, \alpha>0, \beta>0$$
 and $\frac{\alpha}{\beta}<1$

イロン イ理 とく ヨン イヨン

æ

•
$$\hat{\alpha} = 0.024$$

•
$$\hat{\beta} = 0.11$$

•
$$\hat{\mu} = 0.016$$

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
		0000		
Several Hakwes processes in 2D				

FIGURE 6: Simulation of a Hawkes' process for different parameters

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
		0000		
Associated Epps effect to Hawkes processes				

FIGURE 7: Empirical and theoretical Epps effect

イロト 不同 トイヨト イヨト

ъ

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks

REAL LIFE EXAMPLE

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

22/31

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
			00000	
Dataset considered				

DEFINITION OF ASSETS AND ASSUMPTIONS

- Euro-Bund futures contracts or Euro-Bobl futures contracts
- Tick-by-tick (0.01) last traded price
- Trading time between 8 AM and 10 PM (intraday seasonality)
- Assumption 1: parameters of the model are piecewise constant in the intraday regime and the distribution of parameters is also constant for every day

 \Rightarrow stationarity and restriction to the time period 9 AM to 11 AM from 01/11/2009 to 15/12/2009 (21 days) on the contract maturity 12/2009

Assumption 2: Only jumps of size ± = 1

 \Rightarrow Price dynamics is marginally **modified**

FIGURE 8: Histograms of jumps frequencies following a given type of jump, revealing a $\ensuremath{\textit{mean}}$ reverting behavior

FIGURE 9: Histograms of jumps following the jumps with an amplitude greater than 1

Introduction	Model 00000	Numerical Validation	Real Life Example	Conclusion and Outlooks
Signature plot over 21 days				

FIGURE 10: Price of the Euro-Bobl during the whole day 11/03/2009 (maturity 12/2009)

FIGURE 11: Empirical mean signature plot computed for november's opening day for buy orders with jumps of size ± 1

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
			000000	
Euro-Bund Euro-Bobl prices				

FIGURE 12: Last traded price prices path of the Euro-Bobl and Euro-Bund contract on the 3rd of november 2009 (maturity 12/2009)

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
			00000	
Self and cross correlation				

FIGURE 13: Self and cross correlations between Euro-Bobl and Euro-Bund

ъ

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks

CONCLUSION AND OUTLOOKS

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks ●○
Conclusion				

ADVANTAGES

- Simple tick-by-tick price model based on (mutually exciting) Hawkes processes
- Closed form expressions for second order properties at all time scales
- Ability to recover major high frequency stylized facts (Signature plot and Epps effect)
 - ⇒ Simple tool to investigate intraday market features

DOWNSIDES

- Constant parameters $\mu,\,\alpha$ and β
- Large Number of parameters when couplings assets
- No volume

OUTLOOKS

- Implementation of a high frequency trading strategy
- Backtest

Introduction	Model	Numerical Validation	Real Life Example	Conclusion and Outlooks
				00
Acknowledgements				

▲□▶▲□▶▲□▶▲□▶ □ のQで

ACKNOWLEDGEMENTS

- R in finance 2011 committee
- E. Bacry and H. Ismael
- BNP Paribas

CONTACT

- Clément Dunand-Châtellet
- cdunandc@gmail.com

ntroduction	Model 00000	Numerical Validation	Real Life Example	Conclusion and Outlooks ○●
Acknowledgem	nents			
	E. Bacry, S. Delattre, mutually exciting poin	M. Hoffmann, J.F. Muzy, t processes, Submitted to	Modelling microstructur o Quantitative Finance (e noise with (2010)
	T.G. Andersen et al. In	nternational Economic R	eview, 39 , 885-905 (199	7)
	T.W. Epps, Comovements in stock prices in the very short run. Journal of the American Statistical Association, 74 : 291-298, 1979			
	A.G. Hawkes, Spectra processes. Biometrika	a of some self-exciting an a, 58 :83-90, (1971)	d mutually exciting poir	nt