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Through disciplines

FROM PHYSICS TO FINANCE ...

PROPERTIES OF EARTHQUAKES

Irregularly spaced in time, clustering of erthquakes

Stochastic magnitude of main shock

Correlations between main shock and aftershocks: Omori’s Law

Correlation in space between different areas of the Earth crust
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Earthquake’s modeling

MODELING EARTHQUAKES WITH HAWKES PROCESSES

Point process with conditional intensity
Background activity

Correlations between areas A and B

HAWKES PROCESSES

λA(t|Ht) = µ+
∑
t<ti

φ(t− ti) +
∑
t<tj

ψ(t− tj) + Periodic functions (1)

λ: Conditional intensity

µ: Background activity

φ: Response function of a shock from region A at time ti
ψ: Response function of a shock from region B at time tj

5/31



Introduction Model Numerical Validation Real Life Example Conclusion and Outlooks

Conditional intensity
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FIGURE 1: Conditional intensity
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Some similarities ?

HIGH FREQUENCY DATA

Irregular spacing of data in time, clustering
of orders
Irregular spacing of earthquakes

Discrete nature of price variations tick data
Discrete variations of magnitudes

Autocorrelation of assets
Main Shock and aftershocks

Cross correlation between assets
Regions A and B

⇒ Prices are point processes living on a
tick grid
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FIGURE 2: Discrete nature of prices of FBund the
07th of december 2009 (maturity 03/2010)
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Aim of work

OBJECTIVES

Estimate realized volatility at high frequency

Estimate correlations between assets at high frequency

Design a cross scale model

CONSTRAINTS

Realized volatility is not stable at fine scale

Strong mean reversion at very small scales

Correlations between assets vanish at small scales

TOOLS

Volatility: Signature plot
Mean reversion: histograms

Correlations: Epps effect
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Signature Plot

FIRST STYLIZED FACT: SIGNATURE PLOT (ANDERSEN [2])

Definition: the realized volatility over a period [0, T ] at scale τ

X(t): price of the asset at time t (last traded, mid price, ...)

V̂ (τ) =
1

T

T/τ∑
n=0

(X((n+ 1)τ)−X(nτ))2 (2)
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Epps effect

SECOND STYLIZED FACT: EPPS EFFECT (EPPS [3])

Definition: A correlation coefficient over a time period [0, T ] of price increments
of two assets

X1(t) and X2(t): prices of two assets at time t

ρ̂(τ) =
ˆV12(τ)√

V̂1(τ)V̂2(τ)

(3)

where

ˆV12(τ) =
1

T

T/τ∑
n=0

[X1((n+ 1)τ)−X1(nτ)][X2((n+ 1)τ)−X2(nτ)] (4)
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MODEL
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Definition of model

A ”FINE TO COARSE” MODEL [1]

Defined at a microscopic scale (tick-by-tick data modeling by means of marked point
processes with appropriate stochastic intensities)

⇒ 4 key points in the model :

1 Diffuse as a brownian diffusion in large scale (cross scale model)
2 Incorporate microstructure noise (mean reversion) through coupled Hawkes

processes
3 Restriction of parameters to ensure stationarity, non-negativity and stability
4 Account for signature plot and Epps effect
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Overview of the model

THE MUTUALLY EXCITED PRICE MODEL (MEP) IN 1D

X(t) = N+(t)−N−(t) (5)

where N±(t) are Hawkes processes with random intensities λ±(t) given by :

λ±(t) =
µ

2
+

∫ t

0
φ(t− s)dN∓(s) (6)

where µ is an exogeneous intensity and φ(t) a mutually exciting kernel

STABILITY CONDITIONS

φ(t) > 0 and Supp(φ) ⊂ R+ (To ensure non-negativity)

Stability ≡ ||φ||1 (X(t) has stationary increments)

Particular case φ(t) = αe−βt1R+
(t) (||φ||1 = α

β
< 1 To ensure stationarity and

stability)
α > 0 is a scale parameter
β > 0 drives the strength of the time decay
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Conditional intensity

The more X(t) goes up, the greater the intensity of λ−
The more X(t) goes down, the greater the intensity of λ+
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FIGURE 3: Intensities of λ+ and −λ−
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Theoretical formulae

CLOSED FORM FORMULA FOR THE MEAN SIGNATURE PLOT OF THE MEP MODEL

X(t) on [0, T ] with initial condition X(0) = 0

V (τ) =
1

T

T/τ∑
n=0

(X(nτ + τ)−X(nτ))2 (7)

which can be written as :

V (τ) = E[V̂ (τ)] = Λ

[
ψ2 + (1− ψ2)

1− e−γτ

γτ

]
(8)

where Λ = 2µ
1−||φ||1

, ψ = 1
1+||φ||1

, and γ = α+ β

Closed Form formula for the mean Epps effect is too long to be exposed here, but
can be computed !
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Overview of the model in 2D

THE MUTUALLY EXCITED PRICE MODEL (MEP) IN 2D

X(t) = N1(t)−N2(t) and Y (t) = N3(t)−N4(t) (9)

where Ni(t) are Hawkes processes with random intensities λi(t) given by :

λ±X(t) =
µ±X
2

+

∫ t

0
φX,X(t− s)dN∓X (s) +

∫ t

0
φX,Y (t− s)dN±Y (s) (10)

and

λ±Y (t) =
µ±Y
2

+

∫ t

0
φY,Y (t− s)dN∓Y (s) +

∫ t

0
φY,X(t− s)dN±X (s) (11)
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NUMERICAL VALIDATION
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One Hawkes’ process
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FIGURE 4: Simulation of a Hawkes’ process for α = 0.024, β = 0.11 and µ = 0.016
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Associated signature plot to Hawkes process
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FIGURE 5: Signature Plot computed in link with figure 4

ˆθreg = Argminθ|V̂ (τ)− V (τ)|2 (12)

constraints: µ > 0, α > 0, β > 0
and α

β
< 1

α̂ = 0.024

β̂ = 0.11

µ̂ = 0.016
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Several Hakwes processes in 2D

FIGURE 6: Simulation of a Hawkes’ process for different parameters
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Associated Epps effect to Hawkes processes
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FIGURE 7: Empirical and theoretical Epps effect
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REAL LIFE EXAMPLE
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Dataset considered

DEFINITION OF ASSETS AND ASSUMPTIONS

Euro-Bund futures contracts or Euro-Bobl futures contracts

Tick-by-tick (0.01) last traded price
Trading time between 8 AM and 10 PM (intraday seasonality)

Assumption 1: parameters of the model are piecewise constant in the intraday
regime and the distribution of parameters is also constant for every day

⇒ stationarity and restriction to the time period 9 AM to 11 AM from 01/11/2009
to 15/12/2009 (21 days) on the contract maturity 12/2009

Assumption 2: Only jumps of size ± = 1

⇒ Price dynamics is marginally modified
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Mean reverting behavior
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FIGURE 8: Histograms of jumps frequencies following a given type of jump, revealing a mean
reverting behavior
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Conditional jumps
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FIGURE 9: Histograms of jumps following the jumps with an amplitude greater than 1
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Signature plot over 21 days
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FIGURE 10: Price of the Euro-Bobl during the
whole day 11/03/2009 (maturity 12/2009)
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FIGURE 11: Empirical mean signature plot
computed for november’s opening day for buy
orders with jumps of size ±1
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Euro-Bund Euro-Bobl prices

30000 40000 50000 60000 70000

-4
0

-2
0

0
20

40

Time in sec

N
or

m
al

iz
ed

 P
ric

e

FBund
FBobl

FIGURE 12: Last traded price prices path of the Euro-Bobl and Euro-Bund contract on the 3rd of
november 2009 (maturity 12/2009)
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Self and cross correlation
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FIGURE 13: Self and cross correlations between Euro-Bobl and Euro-Bund
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CONCLUSION AND OUTLOOKS
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Conclusion

ADVANTAGES

Simple tick-by-tick price model based on (mutually exciting) Hawkes processes
Closed form expressions for second order properties at all time scales

Ability to recover major high frequency stylized facts (Signature plot and Epps
effect)

⇒ Simple tool to investigate intraday market features

DOWNSIDES

Constant parameters µ, α and β

Large Number of parameters when couplings assets

No volume

OUTLOOKS

Implementation of a high frequency trading strategy
Backtest
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