R in Finance

Friday, April 29th, 2011

Mutually exciting Hawkes processes for the microstructure noise modeling

Clément Dunand-Châtellet (PhD student)

Ecole Polytechnique, Palaiseau, France
1. **Introduction**

2. **Model**

3. **Numerical Validation**

4. **Real Life Example**

5. **Conclusion and Outlooks**
Properties of Earthquakes

- **Irregularly** spaced in time, *clustering* of earthquakes
- **Stochastic** magnitude of main shock
- **Correlations** between main shock and aftershocks: Omori’s Law
- **Correlation in space** between different areas of the Earth crust
Earthquake’s modeling

MODELING EARTHQUAKES WITH HAWKES PROCESSES

- **Point process with conditional intensity**
- **Background activity**
- **Correlations between areas A and B**

HAWKES PROCESSES

\[
\lambda_A(t|Ht) = \mu + \sum_{t<t_i} \phi(t - t_i) + \sum_{t<t_j} \psi(t - t_j) + \text{Periodic functions} \tag{1}
\]

- \(\lambda\): Conditional intensity
- \(\mu\): Background activity
- \(\phi\): Response function of a shock from region A at time \(t_i\)
- \(\psi\): Response function of a shock from region B at time \(t_j\)
Figure 1: Conditional intensity
Some similarities?

High Frequency data

- **Irregular** spacing of data in time, clustering of orders
 Irregular spacing of earthquakes
- Discrete nature of price variations **tick data**
 Discrete variations of magnitudes
- **Autocorrelation** of assets
 Main Shock and aftershocks
- **Cross correlation** between assets
 Regions A and B

⇒ *Prices are point processes living on a tick grid*

Figure 2: Discrete nature of prices of FBund the 07th of December 2009 (maturity 03/2010)
OBJECTIVES
- Estimate **realized volatility** at high frequency
- Estimate **correlations** between assets at high frequency
- Design a **cross scale** model

CONSTRAINTS
- Realized **volatility is not stable** at fine scale
- Strong **mean reversion** at very small scales
- **Correlations** between assets **vanish** at small scales

TOOLS
- Volatility: **Signature plot**
- Mean reversion: histograms
- Correlations: **Epps effect**
First stylized fact: Signature plot (Andersen [2])

- **Definition:** the realized volatility over a period \([0, T]\) at scale \(\tau\)

\[\hat{V}(\tau) = \frac{1}{T} \sum_{n=0}^{T/\tau} (X((n+1)\tau) - X(n\tau))^2 \] \hfill (2)

\(X(t)\): price of the asset at time \(t\) (last traded, mid price, ...)

![Signature plot](image1)

![Signature plot](image2)
SECOND STYLIZED FACT: EPPS EFFECT (EPPS [3])

- **Definition:** A correlation coefficient over a time period $[0, T]$ of price increments of two assets

$X_1(t)$ and $X_2(t)$: prices of two assets at time t

$$
\hat{\rho}(\tau) = \frac{\hat{V}_{12}(\tau)}{\sqrt{\hat{V}_1(\tau)\hat{V}_2(\tau)}}
$$

(3)

where

$$
\hat{V}_{12}(\tau) = \frac{1}{T} \sum_{n=0}^{T/\tau} [X_1((n + 1)\tau) - X_1(n\tau)][X_2((n + 1)\tau) - X_2(n\tau)]
$$

(4)
MODEL
A ”FINE TO COARSE” MODEL [1]

Defined at a microscopic scale (tick-by-tick data modeling by means of marked point processes with appropriate stochastic intensities)

⇒ 4 key points in the model :

1. Diffuse as a brownian diffusion in large scale (cross scale model)
2. Incorporate microstructure noise (mean reversion) through coupled Hawkes processes
3. Restriction of parameters to ensure stationarity, non-negativity and stability
4. Account for signature plot and Epps effect
The mutually excited price model (MEP) in 1D

\[X(t) = N^+(t) - N^-(t) \] \hspace{1cm} (5)

where \(N^\pm(t) \) are Hawkes processes with random intensities \(\lambda^\pm(t) \) given by:

\[\lambda^\pm(t) = \frac{\mu}{2} + \int_0^t \phi(t-s)dN^\mp(s) \] \hspace{1cm} (6)

where \(\mu \) is an exogeneous intensity and \(\phi(t) \) a mutually exciting kernel.

Stability conditions

- \(\phi(t) > 0 \) and \(Supp(\phi) \subset \mathbb{R}_+ \) (To ensure non-negativity)
- Stability \(\equiv ||\phi||_1 \) (X(t) has stationary increments)
- Particular case \(\phi(t) = \alpha e^{-\beta t}1_{\mathbb{R}_+}(t) \) (\(||\phi||_1 = \frac{\alpha}{\beta} < 1 \) To ensure stationarity and stability)
 - \(\alpha > 0 \) is a scale parameter
 - \(\beta > 0 \) drives the strength of the time decay
The more $X(t)$ goes up, the greater the intensity of λ_-

The more $X(t)$ goes down, the greater the intensity of λ_+

Figure 3: Intensities of λ^+ and $-\lambda^-$
Closed Form Formula for the Mean Signature Plot of the MEP Model

- $X(t)$ on $[0, T]$ with initial condition $X(0) = 0$

$$V(\tau) = \frac{1}{T} \sum_{n=0}^{T/\tau} (X(n\tau + \tau) - X(n\tau))^2$$

which can be written as:

$$V(\tau) = \mathbb{E}[\hat{V}(\tau)] = \Lambda \left[\psi^2 + (1 - \psi^2) \frac{1 - e^{-\gamma \tau}}{\gamma \tau} \right]$$

where

$$\Lambda = \frac{2\mu}{1 - \|\phi\|_1}, \quad \psi = \frac{1}{1 + \|\phi\|_1}, \quad \text{and} \quad \gamma = \alpha + \beta$$

- Closed Form formula for the mean Epps effect is too long to be exposed here, but can be computed!
Overview of the model in 2D

THE MUTUALLY EXCITED PRICE MODEL (MEP) IN 2D

\[X(t) = N_1(t) - N_2(t) \quad \text{and} \quad Y(t) = N_3(t) - N_4(t) \]

(9)

where \(N_i(t) \) are Hawkes processes with random intensities \(\lambda_i(t) \) given by:

\[
\lambda_{X}(t) = \frac{\mu_{X}}{2} + \int_{0}^{t} \phi_{X,X}(t-s) dN_{X}^{\pm}(s) + \int_{0}^{t} \phi_{X,Y}(t-s) dN_{Y}^{\pm}(s)
\]

(10)

and

\[
\lambda_{Y}(t) = \frac{\mu_{Y}}{2} + \int_{0}^{t} \phi_{Y,Y}(t-s) dN_{Y}^{\pm}(s) + \int_{0}^{t} \phi_{Y,X}(t-s) dN_{X}^{\pm}(s)
\]

(11)
Numerical Validation
Figure 4: Simulation of a Hawkes' process for $\alpha = 0.024$, $\beta = 0.11$ and $\mu = 0.016$
\[
\hat{\theta}_{reg} = \text{Argmin}_\theta | \hat{V}(\tau) - V(\tau)|^2
\]

constraints: \(\mu > 0, \alpha > 0, \beta > 0 \) and \(\frac{\alpha}{\beta} < 1 \)

- \(\hat{\alpha} = 0.024 \)
- \(\hat{\beta} = 0.11 \)
- \(\hat{\mu} = 0.016 \)

Figure 5: Signature Plot computed in link with figure 4
Figure 6: Simulation of a Hawkes’ process for different parameters
Figure 7: Empirical and theoretical Epps effect
Real Life Example
Definition of Assets and Assumptions

- **Euro-Bund futures** contracts or **Euro-Bobl futures** contracts
- Tick-by-tick (0.01) **last traded price**
- Trading time between 8 AM and 10 PM (intraday seasonality)

- **Assumption 1:** parameters of the model are **piecewise constant** in the intraday regime and the distribution of parameters is also constant for every day
 - ⇒ **stationarity** and restriction to the time period 9 AM to 11 AM from 01/11/2009 to 15/12/2009 (21 days) on the contract maturity 12/2009

- **Assumption 2:** Only jumps of size \(\pm = 1 \)
 - ⇒ Price dynamics is marginally **modified**
Mean reverting behavior

Figure 8: Histograms of jumps frequencies following a given type of jump, revealing a **mean reverting behavior**
Figure 9: Histograms of jumps following the jumps with an amplitude greater than 1.
Figure 10: Price of the Euro-Bobl during the whole day 11/03/2009 (maturity 12/2009)

Figure 11: Empirical mean signature plot computed for November’s opening day for buy orders with jumps of size ±1
Figure 12: Last traded price prices path of the Euro-Bobl and Euro-Bund contract on the 3rd of November 2009 (maturity 12/2009)
Figure 13: Self and cross correlations between Euro-Bobl and Euro-Bund
Conclusion and Outlooks
Advantages
- Simple tick-by-tick price model based on (mutually exciting) Hawkes processes
- Closed form expressions for second order properties at all time scales
- Ability to recover major high frequency stylized facts (Signature plot and Epps effect)

⇒ Simple tool to investigate intraday market features

Downsides
- Constant parameters μ, α and β
- Large Number of parameters when couplings assets
- No volume

Outlooks
- Implementation of a high frequency trading strategy
- Backtest
ACKNOWLEDGEMENTS

- R in finance 2011 committee
- E. Bacry and H. Ismael
- BNP Paribas

CONTACT

- Clément Dunand-Châtellet
- cdunandc@gmail.com

