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Introduction

Analysis of Financial and Econometric Data

I Serial dependence

I Non-normality

I Cross dependence

Time

0 50 100 150 200

−4
−2

0
2

4

Time

0 100 200 300 400 500

−0
.01

0
−0

.00
5

0.0
00

0.0
05

0.0
10

1 2 3 4 5 6

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

De
ns

ity

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

● ●
●

●
●

●●
●

● ●
● ●

●

●

●

●

●

●●

●

●
●

●

●●●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●
●●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

−3 −2 −1 0 1 2 3

−4
−2

0
2

4

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

●●
●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●●

●●

●
●

●

●
●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

−10 −5 0 5 10 15

−1
5

−1
0

−5
0

5

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

David S. Matteson (dm484@cornell.edu) Dependence within Financial Markets 2011 April 30 2 / 26



Serial Dependence

Univariate Serial Dependence

I Serial correlation

cor(xt , xt−`)

I Nonlinear correlation

cor(h(xt), h(xt−`))

I Arbitrary dependence

xt vs. xt−`

I Simultaneous measure

xt vs. {xt−1, . . . xt−k}
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Serial Dependence Distance Covariance

Distance Covariance

Distance covariance V(x1, x2) measures dependence between r.v.
x1 ∈ Rq1 and x2 ∈ Rq2 , for all distributions with finite first moments

V2(x1, x2) = ||φx1,x2(t1, t2)− φx1(t1)φx2(t2)||2ω

I φx1 and φx2 denote the characteristic functions of x1 and x2, resp.

I φx1,x2 denotes the joint characteristic function

I ω(t1, t2) is a positive weight function

I V(x1, x2) = 0 if and only if x1 and x2 are independent
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Serial Dependence Distance Covariance

Sample Distance Covariance

Random sample (X(1),X(2)), size n, empirical distance covariance statistic

V2
n

(
X(1),X(2)

)
= ||φn

x1,x2
(t1, t2)− φn

x1
(t1)φn

x2
(t2)||2ω

=
1

n2

n∑
k,l=1

AklBkl

akl = ||X (1)
k − X

(1)
l ||q1 , bkl = ||X (2)

k − X
(2)
l ||q2 , for k , l = 1, . . . , n

Akl = akl − āk. − ā.l + ā.., Bkl = bkl − b̄k. − b̄.l + b̄..,

(Székely et al., 2007)

I limn→∞ Vn
a.s.
= V, and nV2

n convergences in distribution to a r.v.
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Serial Dependence Alternative Measure

An Alternative Measure

I V(x1, x2) depends on marginal distributions

I Apply probability integral transformation (PIT)

marginal CDF FX : R→ [0, 1], define u = FX (x)

I V(u1,u2) = 0 iff x1 and x2 are independent

I The FX are unknown

I Use F̂X , marginal ranks

I Let û = F̂X (x)

Lemma

Vn(Û1, Û2)
a.s.−→ V(u1,u2), and nV2

n(Û1, Û2)
D−→ r.v., as n→∞
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Serial Dependence A Joint Test

A Joint Test for Serial Dependence

I V(yt , yt−k) measures lag-k serial dependence

I Let yt−k = {yt−1, . . . , yt−k}

I V(yt , yt−k) jointly measures serial dependence up to lag-k

I Assuming stationarity, we use V(ut ,ut−k)

I Joint hypothesis for serial dependence

H0 : φut ,ut−`
= φutφut−`

for all ` = 1, . . . , k

I We define our test statistic as

Q1(Y, k) = nV2
n(Ût , Ût−k)
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Serial Dependence A Joint Test

Asymptotic Distribution
I Under H0,

Q1(Y, k)
D−→ ||ζk(a, b)||2ω

ζk(·, ·) mean zero complex Gaussian process with covariance function

Rk(c , c0) =
(
φu(a− a0)− φu(a)φu(a0)

)(
φuk

(b − b0)− φuk
(b)φuk

(b0)
)

for c = (a, b), c0 = (a0, b0) ∈ R× Rk

I φu characteristic function of Uniform(0,1) r.v., and φuk
= φu · · ·φu

I Distribution Free Test

I Analogous Multivariate Test
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Serial Dependence Unemployment Rates

Seasonally Adjusted Monthly Unemployment Rates (%)
CA, FL, IL, MI, OH, & WI, from January 1976 through August 2010
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Serial Dependence Unemployment Rates

Standardized Change in Monthly Unemployment Rate %
First difference series, scaled by monthly standard deviations
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Serial Dependence Unemployment Rates

Testing for Serial Dependence

I Transform to stationary yt

I First difference series, scaled by monthly standard deviations

I Q6(Y, 12) = 121.67 with p-value ≈ 0

I Fit a vector autoregression of order three, via OLS

yt = β0 + β1yt−1 + β2yt−2 + β3yt−3 + et

I Calculate residuals êt

I Q6(Ê, 12) = 11.31 with p-value ≈ 0.31

I ⇒ Linear model is sufficient
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Serial Dependence Unemployment Rates

Residual Series, Monthly Unemployment Rate %
No significant serial dependence
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Multivariate Analysis

Financial & Economic Processes are Inherently Multivariate

I Simultaneous Analysis is Crucial

I Multivariate Analysis is Difficult

I Independent Component Analysis (ICA)
I Representation of multivariate data
I Dimension reduction
I Simplify analysis and visualization

I GOAL estimation of latent independent sources s from observations y
I A novel statistical framework for ICA
I Minimal prior assumptions on observations y
I A distribution-free test for the existence of independent components
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Multivariate Analysis

Residual Distribution: Univariate and Bivariate

||||| | || ||| || |||| || || || | || ||| | ||| || || |||| || | |||| ||| || | |||| | || || ||| ||| |||| | | || || ||| || || | || || || | ||| |||

               MI

−3 −2 −1 0 1 2

●

●●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

−4 −2 0 2 4

−1.
0

−0.
5

0.0
0.5

1.0
1.5

2.0

●

●●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−3
−2

−1
0

1
2

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

|| | || | |||| || || | || || |||| ||| | || | ||| || || || |||| || | || ||| || ||| || | ||| | |||||| || || || | ||| ||| || ||| ||| |||| || || ||

               OH

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

|| | ||| || || | || |||| || || || | || | | || |||||| ||| || ||| |||| | || || ||||| |||| | || | || | || | | ||| || | |||| ||| | || || ||| || || ||

               CA

−1.
0

−0.
5

0.0
0.5

1.0
1.5

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−1.0 0.0 1.0 2.0

−4
−2

0
2

4

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●
●● ●● ●

●
●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●
●●●● ●

●
●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

−1.0 0.0 0.5 1.0 1.5

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●
●● ●● ●

●
●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

| || || | ||| || | |||||| |||||| || ||||| ||| || || || || | | | |||||| || | |||| |||| | ||||| | || || ||| | ||| ||| |||| || || ||| ||| || |

               WI

David S. Matteson (dm484@cornell.edu) Dependence within Financial Markets 2011 April 30 14 / 26



Multivariate Analysis Notation

Independent Component Analysis

For iid vector observations yt , assume independent components (ICs) st

exist, such that
yt = Mst

I M denotes the mixing matrix

I Validity of assumption is tested

For simplicity

I U, an uncorrelating matrix

I zt = Uyt , uncorrelated observations

Then st = M−1yt = M−1U−1zt ≡Wzt

in which W = M−1U−1 is referred to as the separating matrix
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Methodology Assumptions

Assumptions

I yt = (y1t , . . . , ydt)′ a d-dimensional random vector

I yt has continuous distribution function

I yt
iid∼ Fy

I E||yt ||2 <∞
I E (yt) = 0

I st = (s1t , . . . , sdt)′ a random vector of ICs

I E{sit} = 0 and Var{sit} = 1, ∀i

I Separating matrix W is orthogonal

I I = Cov(st) = WCov(zt)W′ = WW′

I Parameterized by p = d(d − 1)/2 vector θ of rotation angles, Wθ
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Methodology Testing

Testing for the Existence of Independent Components

I Necessary & sufficient condition for mutually ICs is that

φs = φs1 · · ·φsd

I Equivalent joint hypotheses WRT transformed variables ui

H0 : φui ,ui+
= φuiφui+

for all i = 1, . . . , d − 1
HA : φui ,ui+

6= φuiφui+
for some i = 1, . . . , d − 1

I We define our test statistic as

Un(S) = n
d−1∑
i=1

V2
n(Ûi , Ûi+)

I Under H0, asymptotic distribution only depends on the dimension d
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Methodology Estimation

PITdCovICA Estimator

I Let st(θ) = Wθzt and ûk,t(θ) = F̃sk (θ) (sk,t(θ))

I i+ = {j : i < j ≤ d} V2(ui ,ui+) dependence si vs{si+1, . . . , sd}

I Components of s are mutually independent iff V(ui ,ui+) = 0 ∀i

I Objective function

Ĵn(θ) =
d−1∑
i=1

V2
n(Ûi (θ), Ûi+(θ))

I Estimator: θ̂n = argminθ Ĵn(θ) Theorem: θ̃n
a.s.−→ θ0

I Can be decomposed into (d − 1) conditionally indep. optimizations
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Application Unemployment Rates

PCA vs. ICA: Filtered Unemployment Rate êt

Test statistic and approximate p-value for joint test of ICs

Un(6) yt êt ẑt ŝt

Test Statistic 41.48 6.01 1.396 0.635
Approx. p-value 0 0 0.008 0.900
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Application Unemployment Rates

PCA vs. ICA
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Application Interpretation of ICs

Interpretation of ICs

CA : e1t = −0.65s1t − 0.26s3t + 0.66s5t

FL : e2t = −0.26s1t + 0.94s2t

IL : e3t = −0.48s1t + 0.83s4t

MI : e4t = −0.86s1t − 0.25s4t − 0.38s5t

OH : e5t = −0.46s1t − 0.83s6t

WI : e6t = −0.13s1t − 0.98s3t

I s1t is related to each state

I s1t has positive relationship with seasonally adjusted GDP

I Supports hypothesis −s1t is national component of unemployment rate

I s2t , s3t and s6t are specific components for FL, WI, and OH, resp.
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Application Yield Curve

Interest Rate Yields
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Application Yield Curve

Yield Curve
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Application Volatility Modeling

Volatility: Σ̂t = M̂Ĉov{ŝt |Ft−1}M̂′ = M̂diag{σ̂2
it}M̂′
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Conclusions Thank you!

Conclusions

I Joint test for multivariate serial dependence

I New approach for independent component analysis

I We combine nonparametric probability integral transformation with a
generalized nonparametric whitening method

I Limiting properties of the proposed estimator under weak conditions

I A test statistic for checking the existence of independent components

Future Work

I Generalize to dependent data

I Extend to high dimensional data

I Derive asymptotic critical values for general test statistics

I Explore new applications: high-frequency time series, asset allocation
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