Can you do better than cap-weighted equity benchmarks?

Guy Yollin
Principal Consultant, r-programming.org
Visiting Lecturer, University of Washington

Krishna Kumar
Financial Consultant
This presentation is for informational purposes.

This presentation should not be construed as a solicitation or offering of investment services.

The presentation does not intend to provide investment advice.

The information in this presentation should not be construed as an offer to buy or sell, or the solicitation of an offer to buy or sell any security, or as a recommendation or advice about the purchase or sale of any security.

The presenter(s) shall not be liable for any errors or inaccuracies in the information presented.

There are no warranties, expressed or implied, as to accuracy, completeness, or results obtained from any information presented.

INVESTING ALWAYS INVOLVES RISK.
Outline

1. Introduction to efficient indexes
2. Overview of modeling
3. Analysis of results
4. Wrap-Up
Outline

1. Introduction to efficient indexes
2. Overview of modeling
3. Analysis of results
4. Wrap-Up
The tangency portfolio

Efficient Frontier

sdP

muP

F

T

MV

0 5 10 15
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
The tangency portfolio

Efficient Frontier

\[T \approx \text{S&P500} \, ? \]
Is Your Index Fund Broken?

Worth Their Weighting?

Over 11 years ended Jan. 1, 2010, indexes that aren’t tied to market values outperformed.

<table>
<thead>
<tr>
<th></th>
<th>Efficient</th>
<th>Minimum Volatility</th>
<th>Fundamental</th>
<th>S&P 500 Equal-Weighted</th>
<th>S&P 500</th>
<th>Russell 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap-Weighted</td>
<td></td>
<td>2</td>
<td>4</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-cap-Weighted</td>
<td>6%</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: The Journal of Indexes

Jack Hough, SmartMoney, "Is Your Index Fund Broken?", January 31, 2011
The efficient market inefficiency of capitalization-weighted stock portfolios

“Matching the market is an inefficient investment strategy.”

Robert A. Haugen and Nardin L. Baker

Motivation for research

Efficient Indexation

- maximize Sharpe ratio

\[w^* = \arg \max_w \frac{w' \mu}{\sqrt{w' \Sigma w}} \]

- covariance matrix
 - derived from principal component analysis (PCA)

- expected returns
 - form deciles by downside risk
 - expected return equals mean of each decile

Yollin/Kumar (Copyright © 2011)
Research project

Goal

- Compare performance of alternative index constructions using S&P 500 constituents

Methodology

- use a rolling 2-year window of current constituent returns and re-balance at the start of each month
- generate 48-months of out-of-sample index returns (Jan-2007 to Dec-2010)
- S&P 500 returns were calculated using constituent weights (apples-to-apples comparisons without factoring in transaction costs)

Constraint

- positive weights (max of 25%)

Focus of research

- minimum risk (minimum variance and minimum CVaR) portfolios
Outline

1. Introduction to efficient indexes
2. Overview of modeling
3. Analysis of results
4. Wrap-Up
Global minimum variance portfolio

Efficient Frontier

muP

sdP

Global Minimum Variance Portfolio

F

T

Yollin/Kumar (Copyright © 2011)
M-V optimization and Quadratic Programming

general QP problem

\[
\min_b \quad \frac{1}{2} b^T Db - b^T d \\
\text{s.t.} \quad A^T b \geq b_0 \\
\quad b \geq 0
\]

mean-variance portfolio optimization

\[
\min_b \quad \omega^T \Sigma \omega \\
\text{s.t.} \quad \omega^T \mu = \mu_p \\
\quad \omega^T 1 = 1 \\
\quad \omega_{min} \geq \omega_i \geq \omega_{max}
\]

R Code: the solve.QP function

```r
> library(quadprog)
> args(solve.QP)

function (Dmat, dvec, Amat, bvec, meq = 0, factorized = FALSE) NULL
```

objective function assignments: \(2\Sigma \rightarrow D \quad \omega \rightarrow b \quad 0 \rightarrow d\)
The general form of a factor model for asset returns is:

\[R_{j,t} = \beta_{0,j} + \beta_{1,j} F_{1,t} + \cdots + \beta_{p,j} F_{p,t} + \epsilon_{j,t} \]

where

- \(R_{j,t} \) is either return or excess return on the jth asset at time t
- \(F_{1,t}, \ldots, F_{p,t} \) are factors (aka risk factors) at time t
- \(\epsilon_{1,t}, \ldots, \epsilon_{n,t} \) are uncorrelated, mean-zero, unique risks

The factor model in matrix form is:

\[R_t = \beta_0 + \beta^T F_t + \epsilon_t \]
Given the following covariance matrices:

\[\Sigma_\epsilon = \begin{pmatrix}
\sigma_{\epsilon,1}^2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_{\epsilon,n}^2
\end{pmatrix} \]

\[\Sigma_F = p \times p \text{ covariance matrix of } (F_t) \]

The returns covariance matrix is:

\[\Sigma_R = \beta^T \Sigma_F \beta + \Sigma_\epsilon \]
Covariance matrix estimation

- Estimating the covariance matrix based on a factor model is a bias-versus-variance trade-off
 - sample covariance matrix is unbiased but may have significant estimation error
 - estimating the covariance matrix via a factor model may be biased but also may significantly reduce estimation error by significantly reducing the number of estimates

- Sample covariance matrix for n-assets
 - \(n(n + 1)/2 \) estimations
 - for 500 assets, 125,250 estimates are required

- Covariance matrix with n-assets and a factor model with p-factors
 - \(np + n + p^2 \) estimations
 - for 500 assets and 10 factors, 5,600 estimates are required
Industry factor model

Model background
- Sheikh, "Barra’s Risk Models", 1995

Response
- daily equity returns

Explanatory variables
- company industry classification

Model details
Cross-sectional factor models

Differences between time-series factor models and cross-sectional factor models:

<table>
<thead>
<tr>
<th>Model type</th>
<th>Assets</th>
<th>Time Periods</th>
<th>Factors</th>
<th>Betas</th>
</tr>
</thead>
<tbody>
<tr>
<td>time-series</td>
<td>one asset at a time</td>
<td>all time periods</td>
<td>known</td>
<td>estimated</td>
</tr>
<tr>
<td>cross-section</td>
<td>all assets</td>
<td>one period at a time</td>
<td>estimated</td>
<td>known</td>
</tr>
</tbody>
</table>

Cross-sectional factor model for the jth asset at some fixed t:

\[R_j = \beta_0 + \beta_1 F_{1,j} + \cdots + \beta_p F_{p,j} + \epsilon_j \]
Industry factor model

General industry factor model has the following form:

\[R_j = \beta_1 F_{1,j} + \beta_2 F_{2,j} + \cdots + \beta_p F_{p,j} + \epsilon_j \]

\[\beta_i = \begin{cases}
1, & \text{if asset } j \text{ in industry } i \\
0, & \text{if asset } j \text{ not in industry } i
\end{cases} \]

- Factor realizations represent a weighted average return in time period \(t \) of all of the asset returns for companies operating in industry \(j \)

- S&P Sector GICS codes for 10 sectors (10 sectors):
 - energy
 - materials
 - industrial
 - discretionary
 - staples
 - health
 - financial
 - info tech
 - telecom
 - utilities
Recall the general form of a factor model:

\[R_t = \beta_0 + \beta^T F_t + \epsilon_t \]

- In statistical factor models:
 - factor realizations are not directly observable
 - no external knowledge of betas (as in cross-sectional models)
 - factor realizations and betas must be extracted from the returns data using statistical methods

- Principal component analysis - eigen decomposition of covariance matrix
PCA statistical factor model

Model background

Response

- daily equity returns

Explanatory variables

- principal components

Model details

Conditional Value-at-Risk

![Conditional Value-at-Risk Diagram](image)

- \(\alpha \)
- \(1 - \alpha \)
- Value-at-Risk
- CVaR
- P&L Distribution

Yollin/Kumar (Copyright © 2011)
It can be shown that minimizing the CVaR of a portfolio is a linear programming problem that can be carried out with a general-purpose LP solver†

†Yollin, "R Tools for Portfolio Optimization", R/Finance 2009
Outline

1. Introduction to efficient indexes
2. Overview of modeling
3. Analysis of results
4. Wrap-Up
Cumulative return comparisons

Cumulative Returns

SP500
equal weights
min var sample cov
cumulative return

Yollin/Kumar (Copyright © 2011) Beating the benchmark R/Finance 2011 24 / 32
Cumulative return comparisons

Drawdown from Peak Equity Attained

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

SP500
equal weights
min var sample cov
drawdown

Jan 07 Jul 07 Jan 08 Jul 08 Jan 09 Jul 09 Jan 10 Jul 10 Dec 10

Yollin/Kumar (Copyright © 2011)
Cumulative return comparisons

Cumulative Returns

SP500
min var industry
min var PCA
min CVaR

cumulative return

Yollin/Kumar (Copyright © 2011)
Cumulative return comparisons

Drawdown from Peak Equity Attained

-0.5 -0.4 -0.3 -0.2 -0.1 0.0
SP500
min var industry
min var PCA
min CVaR
drawdown

Drawdown from Peak Equity Attained

Yollin/Kumar (Copyright © 2011)
Summary

<table>
<thead>
<tr>
<th></th>
<th>SP500</th>
<th>minVaRSample</th>
<th>minVarIndustry</th>
<th>minVarPCA</th>
<th>minCVaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative Return</td>
<td>-0.106</td>
<td>-0.086</td>
<td>0.055</td>
<td>0.032</td>
<td>0.025</td>
</tr>
<tr>
<td>Annualized Return</td>
<td>-0.028</td>
<td>-0.022</td>
<td>0.013</td>
<td>0.008</td>
<td>0.006</td>
</tr>
<tr>
<td>Annualized StdDev</td>
<td>0.241</td>
<td>0.138</td>
<td>0.161</td>
<td>0.174</td>
<td>0.139</td>
</tr>
<tr>
<td>Conditional VaR</td>
<td>-0.159</td>
<td>-0.105</td>
<td>-0.118</td>
<td>-0.126</td>
<td>-0.100</td>
</tr>
<tr>
<td>Max DrawDown</td>
<td>0.549</td>
<td>0.337</td>
<td>0.370</td>
<td>0.406</td>
<td>0.329</td>
</tr>
</tbody>
</table>

- All minimum variance portfolios and the minimum CVaR portfolio outperformed the S&P 500 Index during the testing period
 - Higher annualized return
 - Lower annualized volatility
 - Smaller conditional value-at-risk
 - Smaller maximum drawdown

- Returns are difficult (impossible) to forecast and these techniques don’t require them

Can you do better than cap-weighted equity benchmarks? Maybe!
Special thanks

SunGard Financial Systems

- Historical S&P 500 constituent weights
- Historical stock prices
Special thanks

Revolution Analytics

- Revolution R Enterprise and RevoScaleR
Questions and comments

Contacting the Presenters

Guy Yollin
- http://www.r-programming.org
- gyollin@r-programming.org

Krishna Kumar
- kk2250@gmail.com