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Cointegration

Occurs when a linear combination of I(1) variables is I(0),
and also in other more general cases.

I A drunk walking his dog.
I Any group hanging out with Thomas on a given night.





Computing and Testing Cointegration

VECM methods boil down to modeling variables x over time
t = 1,2, . . . ,T like

∆xt = Πxt−1 + εt ,

with the cointegration hypothesis that rank(Π) ≤ r .



Computing and Testing Cointegration

Writing Π = αβT , α, β ∈ Rn×r , the equations are often arranged in
matrix form as a linear system:

X0 = X1βα
T + E ,

where Xj arise from vectors xt .

The Johansen method estimates

min
βαT
‖X0 − X1βα

T‖

by maximum likelihood.



The Singular Value Decomposition (SVD)

Let A ∈ Rm×n,m ≥ n. The SVD of A is:

AV = UΣ,

V T V = I = UT U,
Σ = diag(σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0),

where U ∈ Rm×n,Σ ∈ Rn×n,V ∈ Rn×n (thin version).



The Singular Value Decomposition

Note that the SVD:

I Always exists.
I Is (almost always) the most numerically-stable way to

compute many things with matrices.
I Is a model-free way to consider data.

But, it’s somewhat computationally expensive to compute.



SVD and Cointegration (Doornik, O’Brien1)

Solve minβαT ‖X0 − X1βα
T‖ by SVD(s) with:

1. Compute XjVj = UjΣj ,

2. Let Z := UT
1 U0,

3. Compute ZVz = UzΣz .

They show that β = T 1/2V1Σ†Uz , and α = T 1/2V0Σ0Z T Uz .

1Doornik, J.A. and O’Brien, R.J. (2002). Numerically Stable Cointegration
Analysis, Computational Statistics and Data Analysis, 41, 185-193.



What about Large Data?

Doornik’s approach can reliably detect numerical rank of large
matrices in the presence of ill-conditioned data. But,

1. We’re generally not interested in trading huge sets.
2. Statistical interpretation difficult.



SVD Again

One approach builds a candidate set for cointegration by iterating:

1. Use SVD subset selection2 to pick a few variables.
2. Project remaining variables into subspace defined by the

selected set and choose among those with smallest norm.

That is if K is the set of selected columns in a matrix A, compute
AK VK = UK ΣK and choose additional columns j where ‖UT

K aj‖ is
small.

2Gene Golub and Charles Van Loan, Matrix Computations, Johns Hopkins
University Press, 1996.



SVD Subset Selection, a Real Gem

Listing 1: SVD Subset Selection.
# Input matrix A
# Number of singular values n
# Number of output columns k<=n
# Returns an index subset of columns of A that *estimate*

the k most
# linearly independent columns.
svdsubsel <- function(A,n,k=n)
{
S <- svd(A, n)
Q <- qr( t(S$v[,1:n]) ,LAPACK=TRUE)
Q$pivot[1:k]
}



Example SVD Subset Selection



Performance

Wait, isn’t it expensive to compute all these SVDs?

No! Note that many discussed computations require only partial
SVDs.

Use the IRLB algorithm3.
I IRLB is perhaps the most efficient method to compute a few

singular vectors of matrix.
I IRLB can find vectors associated with largest or smallest

singular vectors.

3http://cran.r-project.org/web/packages/irlba/index.html

http://cran.r-project.org/web/packages/irlba/index.html


Summary

I advocate following Doornik’s advice and using the SVD to solve
the cointegration problem in a numerically stable way.

Use the SVD to mine data for likely cointegrated sets.


