News Sentiment Analysis Using R to Predict Stock Market Trends

Anurag Nagar and Michael Hahsler
Computer Science
Southern Methodist University
Dallas, TX
Topics

- Motivation
- Gathering News
- Creating News Corpus
- Gathering Sentiment
- Results
- Conclusion
- References
Motivation

- It's well known that news items have significant impact on stock indices and prices.
- Lots of previous work on finding sentiment from static text using Text Mining and NLP techniques.
- We analyze news items for sentiment using dynamic data sources – such as online news stories and streaming data such as blogs.
R Resources for Financial News

- R allows real-time news gathering using:
 - `tm` package
 - `tm` package plugins:
 - `tm.plugin.webmining`
 - `tm.plugin.sentiment`
 - `XML` package

- Allow financial news to be aggregated using sources such as Google Finance, Yahoo Finance, Twitter, etc.
R Resources for Financial News

- Creating a corpus using Google Finance:

  ```R
  > corpus <- WebCorpus(GoogleFinanceSource("AAPL"))
  ```

- Returns a corpus of documents with several useful attributes:

 - Time Stamp (Filter out old stories)
 - Heading (Find breaking news)
 - Short Description (Check if it's relevant)
 - Author (Authority?)
 - Source (Reliable source?)
Types of Corpuses

Three types of text corpuses are constructed from the news articles:

- Constructed from Filtered Sentences
- Constructed from just the Headlines
- Constructed from the Short Description Attribute
Extracting Relevant Sentences

- Our approach filters the news articles to only those sentences which contain the stock symbol.
- Instead of tagging the entire news story, we focus only on relevant sentences.

Filtered Sentence Corpus

- Used R package openNLP to break the corpus into sentences.

```r
> stock ← "AAPL"
> sentences ← sentDetect(corpus)
> filteredSentences ← sentences[grepl(stock, sentences)]
```

- **Filtered sentences** more likely to contain company specific news, analysis, and predictions.
WebCorpus allows us to look at the headlines.

```r
> sapply(corpus,FUN=function(x){attr(x,"Heading")})
```

Corpus items have a “Description” attribute

```r
> stock ← "PCLN"
> desc ← sapply(corpus,FUN=function(x) { attr(x,"Description") } )
> filteredDesc ← desc[grepl(stock,desc)]
```

filteredDesc contains stock specific current news.
Identifying Polarity of Words

- Used following sources to create list of “sentiment” words:

1. Multi-Perspective Question Answering (MPQA) Subjectivity Lexicon
 http://www.cs.pitt.edu/mpqa/subj_lexicon.html

2. List of sentiment words from R package tm.plugin.tags

3. List of sentiment words from Jeffrey Breen's tutorial
 http://jeffreybreen.wordpress.com/2011/07/04/twitter-text-mining-r-slides/
Scoring Text Corpus

- An instance (sentence, headline) is positive if the count of positive words is greater than count of negative words and vice versa.

For example, the sentence:
 “AAPL continues its phenomenal run”
is a positive sentence as count(positive) = 2 and count(negative) = 0

 “Cracks develop in PCLN”
is negative heading as count(positive) = 0 and count(negative) = 1
For an entire corpus, we count the positive and negative instances and compute the score as:

Corpus Score = \frac{\text{Positive instances}}{\text{Total instances}}

Three types of Corpus Scores:
1. Sentences Corpus Score
2. Headlines Corpus Score
3. Short Description Corpus Score
Scoring Text Corpus Code

text is from the news, pos and neg are positive and negative word lists
scoreCorpus <- function(text, pos, neg) {
 corpus <- Corpus(VectorSource(text))
 termfreq_control <- list(removePunctuation = TRUE,
 stemming=FALSE, stopwords=TRUE, wordLengths=c(2,100))
 dtm <- DocumentTermMatrix(corpus, control=termfreq_control)
 # term frequency matrix
 tfidf <- weightTfIdf(dtm)
 # identify positive terms
 which_pos <- Terms(dtm) %in% pos
 # identify negative terms
 which_neg <- Terms(dtm) %in% neg
 # number of positive terms in each row
 score_pos <- row_sums(dtm[, which_pos])
 # number of negative terms in each row
 score_neg <- row_sums(dtm[, which_neg])
 # number of rows having positive score makes up the net score
 net_score <- sum((score_pos – score_neg)>0)
 # length is the total number of instances in the corpus
 length <- length(score_pos – score_neg)
 score <- net_score / length
 return(score)
}
Results

- Next slides will compare Sentiment Score trends with Stock Price movement for Apple Corp (AAPL).
- Note the similarity in the shape and trend of the curves.
- Sentiment scores are able to predict the movement of stocks quite accurately.
- Sentence Sentiment scores are often more accurate because of the larger sample size.
Results – AAPL Sentences vs Stock

AAPL Sentences from 04/03 to 05/04
Results – AAPL Headlines vs Stock
Results – AAPL Description vs Stock

AAPL Description from 04/03 to 05/04

AAPL

[2012-04-03/2012-05-04]
Discussion

- Strong visual correlation between stock price movement and News Sentiment Score.
- Accuracy can be further improved by incorporating stock market specific terms into the tagging scheme.
- This scheme can be used along with other techniques to provide a very strong indicator of stock market movement.
References

