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Outline:

I Go over some of my recent finance orientated research
(all Bayesian).

I Some comments on how I am computing stuff (mostly C++,
need more R!)



Quick Review, State Space Models:

State space models provide a very general way to think about time
series modeling.

There is an underlying state of the system which evolves over time.
The evolution of the state is captured by the state equation:

p(θt | θt−1)

where θt is the state at time t.

At each time, we get to observe Xt which depends on θt , we have
the observation equation:

p(xt | θt).



To complete the model we just need a prior on the initial state

p(θ0).

Our joint distribtution is then:

p(θ0, θ1, . . . , θT , x1, x2, . . . , xT ) = p(θ0) Πp(θt | θt−1) p(xt | θt).
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Each X is a "peek" at the corresponding θ.

If you margin out the θ's get a model in which
future X's depend on past X's.

The general picture:

To infer a state we compute:

p(θt | x1, . . . , xT ).

To predict we compute:

p(xT+1 | x1, . . . , xT ).

“compute” will mean MCMC draw.



Example:

The blue points are a time series in an application I worked on.
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Rather than just fit a “trend”, I might want to be more flexible.



State space model:

Observation equation:

Xt = θt + Vt , Vt ∼ N(0,V 2).

State equation:

θt = θt−1 + Wt , Wt ∼ N(0,W 2).

Notice the importance of W !!!!



blue: median of {θt} draws.
green: 25% and 75% quantiles of {θt} draws.
red: 5% and 95% quantiles of {θt} draws.
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Example: Univariate Stochastic Volatility

Daily returns on a stock (Coke) in the S&P500.
T = 2, 516.
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We want to model how the variability (volatility) evolves over time.



Yt is return at time t.

Yt ∼ N(0, σ2
t ).

σt = e(dt/2), dt = log(σ2
t ).

Yt = e(dt/2) Zt

dt = α + βdt−1 + τ εt

Zt , εt ∼ N(0, 1), iid.

Observe {Yt}, {dt} are the latent states.

This is a non-linear state-space model.



Red is at ± 2 σ̂t ,
σ̂t is posterior mean
(average of draws after burn-in).
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MCMC:

Let d0 be the initial state, d0 ∼ N(m0,C0).

(d0, {dt}) | (α, β, τ), {Yt}
(α, β, τ) | (d0, {dt})

For every draw of the {dt}, compute the {σt}, then average to get
the posterior mean.

References in paper on my website.
(Chib, Shephard, Carter & Kohn, Fruwirth-Schnatter).

In particular we use the wonderful FFBS (forward-filter,
backward-sample) algorithm.



Now let Yt denote a vector of time-series.

Maybe dependence structure and volatility change over time.

We want to do Multivariate Stochastic Volatility.

Yt ∼ Np(0,Σt).

Problems:

I Σt is a positive definite matrix.

I if p is large, p(p + 1)/2 is very large.

p = 50→ p(p + 1)/2 = 1275.



p=3:
first row: data (Coke, Dell, DuPont)
second row: σit , third row: ρijt .
blue are our stuff, red is sample covariance on a rolling window.
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ρ12t : pointwize posterior bands.
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We rewrite Σt in terms of a series of time-varying regressions.

p=3:

Y1t = exp(dt1/2) Z1t p(Y1t)
Y2t = φ21t Y1t + exp(d2t/2) Z2t p(Y2t |Y1t)
Y3t = φ31t Y1t + φ32t Y2t + exp(d3t/2) Zt3 p(Y3t |Y2t ,Y1t)

With bigger p, you just keep going!

A high-dimensional non-linear state-space model.

Observe: {Yit}, i = 1, 2, . . . , p.

States: {dit}, i = 1, 2, . . . , p, {φijt}, j = 1, 2, . . . , (i − 1).

At time t, Σt ⇔ (dit , . . . , dpt , φ12t , . . . , φp(p−1)t).



State Equations:

dit = αi + βi di(t−1) + τi εt .

φijt = αij + βij φij(t−1) + τij εt .

Priors:

p(di0), p(φij0), p(αi , βi , τi ), p(αij , βij , τij).



MCMC:

Let ◦ denote “everything else”
(all other parameters and all the data).

(di0, {dit}Tt=1) | ◦
(φij0, {φijt}Tt=1) | ◦

(αi , βi , τi ) | ◦
(αij , βij , τij) | ◦

You just draw each state sequence and the associated AR1
parameters one at a time.



Y1t = exp(dt1/2) Z1t

Y2t = φ21t Y1t + exp(d2t/2) Z2t

Y3t = φ31t Y1t + φ32t Y2t + exp(d3t/2) Zt3

(di0, {dit}Tt=1) | ◦ :

i = p = 3:

Ỹt = Y3t − φ31t Y1t − φ32t Y2t = exp(d3t/2) Zt3

All (di0, {dit}) can be drawn as a univariate stochastic volatility.



Y1t = exp(dt1/2) Z1t

Y2t = φ21t Y1t + exp(d2t/2) Z2t

Y3t = φ31t Y1t + φ32t Y2t + exp(d3t/2) Zt3

(φij0, {φijt}Tt=1) | ◦ :

i = p = 3, j = 2:

Ỹt = Y3t − φ31t Y1t = φ32t Y2t + exp(d3t/2) Zt3

All (φij0, {φijt}) can be drawn as in a simple dynamic linear model
(DLM).

This draw is done very simply using FFBS.



AR coefficients:

(αi , βi , τi ) | ◦ = (αi , βi , τi ) | (di0, {dit})

(αij , βij , τij) | ◦ = (αij , βij , τij) | (φij0, {φijt})



Now I can tell you what the paper is about!!

Want to do this for “large” p.

p = 50: there are p(p − 1)/2 = 1, 225 φ sequences to draw.

Two key ideas:

I Draws are done equation by equation.
Can do blocks of equations separately using
parallel computing.

I Need very non-standard, highly informative prior
on the (α, β, τ).



Parallel Computing:

(a): time to compute as a function of the number of processors.
(b): how to allocate equations across processors.

Note: takes 10 times longer to run a univariate SV than a DLM
(a d than a φ).

p = 100.
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Prior:

With so many things going on, the prior is inevitably influential.
It is more like part of the model.

Here is the posterior mean of {σ1t} from two different priors.
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dit = αi + βi di(t−1) + τi εt .

Clearly, prior on τ is a key.



The prior on the (α, β, τ) for the φ series is even more important
than for the d .

There are many more of them and the data is less informative
about them.



Example: p=20:

top: all the time varying standard deviations.
bot: all the time varying correlations.
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top: all the time varying d .
bot: all the time varying φ.
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Key Idea in Bayesian statistics:

Prior guides search for parsimony in high dimensional
systems !!!!

Here, “parsimony” means φ that don’t change much and φ that
are close to 0.



Prior Specification:

Start by rescaling each series thinking Σt ≈ I .

This can be as simple as subtracting off the sample means and
dividing by the sample standard deviations.



Have to be able to specify just about any kind of prior we want
and draw (α, β, τ) jointly.

But (β, τ) on a bi-variate grid (grid size 100 works).

Then use

p(α, β, τ) = p(β, τ) p(α | β, τ)

with p(α | β, τ) normal.



φt = α + β φt−1 + τ εt .

α | β ∼ N(0, σ2
α(1− β2)).

When β ≈ 0, the state flat-lines, and α is the level.

When β ≈ 1 we are close to a random-walk, want α ≈ 0.



Because we can integrate out α, the draw from the posterior can
be done using

p(α, β, τ | ◦) = p(β, τ | ◦) p(α | β, τ, ◦)

where the first draw is on a grid, and the second draw is just a
normal.



τ prior:
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Pick the probability of the smallest value.

For the other values:

p(τ) ∝ exp(−c |τ − τmin|)

Push towards small value of τ = smooth state.

Here, c = 2, in practice, c = 100.

Prior Parameters: τmin, τmax , p(τ = τmin), c .



c = 200.

0 500 1000 1500 2000 2500

0.
01

0.
02

0.
03

0.
04

0.
05

time

sd

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

co
r

c = 100.

0 500 1000 1500 2000 2500

0.
01

0.
02

0.
03

0.
04

0.
05

time

sd

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

co
r



φt = α + β φt−1 + τ εt .

The full prior on (α, β, τ) mixes over configurations of interest.

p(α, β, τ) = p01 δ{α=0,β=1} p(τ | β = 1) + p00 δ{α=0,β=0} p(τ | β = 0)+

pu0 δ{β=0} p(τ | β = 0) p(α | β = 0) + puu p(β)p(τ | β 6= 0) p(α | β).

I p01: prob of random walk.

I p00: prob of flat-line at 0.

I pu0: prob of flat-line, not at 0.

I puu: prob β ∈ (0, 1).

I when β = 0, may want an even smaller τ .



marginals from the prior.

(2,2) is jittered draws, rest are density smooths.
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Run p = 20 with one order, then reverse the order.

This is the standard deviation of the first (last) series.
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Portfolio Weights:

For larger p it is quite difficult to display the fit of the model.

In order to illustrate the fit and use of the model, consider a simple
application in the case where all of our series are asset returns.

Let wt denote the portfolio weights of the global minimum
variance portfolio. That is, w minimizes w ′ Σ w subject to the
constraint that

∑
wi = 1.

w(Σ) =
Σ−1 ι

ι′Σ−1 ι

where ι is a vector of ones.



p=3: porfolio weights for the global minimum variance portfolio.
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p=20: porfolio weights for the global minimum variance portfolio.
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p=94 !!, time varing standard deviations and correlations.
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Remarks:

This is a hard problem !!!!

Mixture prior gives you a lot of flexibility.

Can get a constant state with β = 1 or β = 0, so the prior
identifies which one you get.

Could order the series so that the first so many span the space of
factors and then adjust the priors so that it is easier to load on
these factors.

Bayesian setup allows us to adjust to outliers, jumps, ....



Example: Discretized Model for Option Pricing
(with Satadru Hore and Hedibert Lopes)

I model parameters: λ = (β, ψ, γ, θ̄, δ, σθ, ρ, σk).

I xi is the strike, i th put option.

I τ is the time till the option expires.

I Pit/Rt is the relative option price, i th put option.

I state θt is growth rate of economy.

We discretize a continuous time model to obtain a nonlinear state
space model for our put option prices.

Observation equation:

Pit

Rt
= f (θt , xi/Rt , τ, λ) + σ Zit , i = 1, 2, 3, 4.

State equation:

θt = θt−1 + δ (θ̄ − θt−1) ∆t +
√

∆t σθ Zt .



Example: Stock Market Predictability
(with Carlos Carvalho and Hedibert Lopes)

Our work is an extension of

Pastor, Lubos, and Robert F. Stambaugh, 2009, Predictive
systems: Living with imperfect predictors, Journal of Finance.

They model our quantities of interest as the system:

rt+1 = µt + ut+1

µt+1 = α + β µt + wt+1

xt+1 = A + B xt + vt+1

with
Var((ut ,wt , v

′
t)
′) = Σ.

r: market return
x: predictors (they use 3)
µ: the mean level (the state).



The want to think about µt as the anticipated part of next periods
return.

µt is the conditional expected return, conditioned on a set of
information available at time t,

µt = E (rt+1 | =t),

where =t denotes the “information”.

Predictors are imperfect in that we do not want to assume that

µt = a + b xt .

It seem more likely that the predictors are imperfect, in
that they are correlated with µt , but cannot deliver it
perfectly.



The idea is that there are unobserved variables affecting our
players r , µ, and x .

We will never have full information, never observe them all.

They are captured in our model by Σ.

rt+1 = µt + ut+1

µt+1 = α + β µt + wt+1

xt+1 = A + B xt + vt+1

with
Var((ut ,wt , v

′
t)
′) = Σ.



rt+1 = µt + ut+1

µt+1 = α + β µt + wt+1

Key prior information:

The predictive system allows us to explore roles for a
variety of prior beliefs about the behavior of expected
returns, chief among which is the belief that unexpected
returns (ut+1) are negatively correlated with innovations
in expected return (wt+1).

Pastor and Stambaugh use economic arguments to motivate the
strong belief that

ρu,w < 0.



The predictive system model assumes that

(ut ,wt , v
′
t)
′ ∼ N(0,Σ), iid.

A great deal of empirical evidence (and associated methodogical
development) tells us the assumption of a constant Σ is a bad one
(ask Nick Polson !!).

Our goal is to use the predictive systems approach, but include
multivariate stochastic volatility.

Instead of just Σ, we want Σt , and we want to easily incorporate
the prior belief that

ρt = corr(ut ,wt) < 0, for all t

and possibly other prior beliefs as well.



Pastor and Stambaugh report results strongly questioning the idea
that stocks are “good for the long run”.

Our preliminary result is that their conclusions may be sensitive to
model and prior specification!!!

Note: while the predictive systems are not obviously a state space
model many of the ideas (eg. FFBS to draw {µt}) apply.



Computing

Over the years I’ve played with various stuff, most notably Python
and Java (even Jython).

Long ago, I published a paper on dynamic graphics written in X11.

I still use some of the applets I wrote while learning Java for
teaching.

But, after a while I decided I needed to focus on C.

From using Java and Python, I had become enamored with object
orientated thinking.



A pure virtual base class in C++ is an interface in Java.

//state space model

class spmod

{

public:

virtual double ptheta0(double theta) = 0; //prior on initial state

virtual double py(double *y, double theta, int t) = 0; //observation equation

virtual double ptheta(double theta, double thetam1) = 0; //state equation

virtual ~spmod() {}

};



Once you get used to the STL and choose a decent matrix class,
C++ is pretty nice, I like it.

The sequential algorithms used for state space models cannot be
“vectorized”.

I coded FFBS for a simple linear DLM in R and and C++ and
C++ was 100 times faster.



Another area I work on is Bayesian methods for tree based models.
Again, I love C++.

class tree {

public:

.....

//------------------------------

//tree constructors, destructors

tree();

tree(const tree&);

tree(double);

~tree() {tonull();}

//------------------------------

//operators

tree& operator=(const tree&);

.....

//------------------------------

//tree functions

size_t treesize() const; //number of nodes in tree

.....

private:

//------------------------------

//parameter for node

......

//------------------------------

//rule: left if x[v] < xinfo[v][c]

size_t v;

size_t c;

//------------------------------

//tree structure

tree_p p; //parent

tree_p l; //left child

tree_p r; //right child

};



But, you have to use R!!.

Having a open source environment where we can all contribute
packages is just fantastic.

It keeps us honest.
Stuff is complicated now, the only way we can know if it works is
to have a lot of people try it!



We have a R-package called BayesTree which implements BART:
Bayesian Additive Regression Trees.
It is a fantastic package!!
Did out of sample predictive comparisons on 42 data sets.

I p=3− 65, n = 100− 7, 000.
I for each data set 20 random splits into 5/6 train and 1/6 test
I use 5-fold cross-validation on train to pick hyperparameters (except

BART-default!)
I gives 20*42 = 840 out-of-sample predictions, for each prediction, divide rmse

of different methods by the smallest

+ each boxplots represents
840 predictions for a
method

+ 1.2 means you are 20%
worse than the best

+ BART-cv best

+ BART-default (use default
prior) does amazingly
well!!
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Beat boosting, random forests, and neural-nets!!.



To some extent, my research is driven by what users of BayesTree
ask for!!

This seems very healthy to me.



It is a terrible package.

The C++ and the R are horrible!!
(I think the Statistics might be ok).

I think I have improved the C++ and we have an mpi version.



Times for new code, new code with mpi (7 cores), BayesTree
package.

num obs new-parallel new-serial old

1 1000 7 9 43

2 2000 8 18 95

3 3000 9 28 149

4 4000 10 36 204

5 5000 12 45 262

6 10000 18 90 547

7 50000 70 439 NA

8 100000 138 902 NA

9 500000 904 6410 NA

6410/904 = 7.



Currently working on:

(i) Fix R part of BayesTree (with George and Chipman)
(ii) A Bayes Finance Package (with Carvalho and Lopes)

Fortunately for me, there is Rccp!
Is rmpi the answer??


