ROI — the R Optimization Infrastructure Package

Stefan Theußl Kurt Hornik David Meyer
R/Finance 2012, May 12
Mean-Variance Portfolio Optimization (Markowitz, 1952)

- **Minimum Risk**
 \[
 \min_w w^\top \hat{\Sigma} w \\
 s.t. \\
 Aw^\top \leq b
 \]

- **Maximum Return**
 \[
 \max_w w^\top \hat{\mu} \\
 s.t. \\
 Aw \leq b \\
 w^\top \hat{\Sigma} w \leq \sigma
 \]
Motivation (2)

Least absolute deviations (LAD) or L_1 regression problem

$$\min \sum_{i}^{n} |y_i - \hat{y}_i|$$

can be expressed as (see Brooks and Dula, 2009)

$$\min_{\beta_0, \beta, e^+, e^-} \sum_{i=1}^{n} e_i^+ + e_i^-$$

s.t.

$$\beta_0 + \beta^\top x_i + e_i^+ - e_i^- = 0 \quad i = 1, \ldots, n$$
$$\beta_j = -1$$
$$e_i^+, e_i^- \geq 0 \quad i = 1, \ldots, n$$

given a point set $x_i \in \mathbb{R}^m$, $i = 1, \ldots, n$ and the j^{th} column representing the dependent variable.
Several different problem classes (in Mathematical Programming, MP) have been identified. Given N objective variables, $x_i, i = 1, \ldots, N$, to be optimized we can differentiate between

- **Linear Programming** (LP, $\min_x c^\top x$ s.t. $Ax = b$, $x \geq 0$)
- **Quadratic Programming** (QP, $\min_x x^\top Qx$ s.t. $Ax = b$, $x \geq 0$)
- **Nonlinear Programming** (NLP, $\min_x f(x)$ s.t. $x \in S$)

Additionally, if variables have to be of type integer, formally $x_j \in \mathbb{N}$ for $j = 1, \ldots, p$, $1 \leq p \leq N$: Mixed Integer Linear Programming (MILP), Mixed Integer Quadratic Programming (MIQP), NonLinear Mixed INteger Programming (NLMINP)
Subset of available solvers categorized by the capability to solve a given problem class:

<table>
<thead>
<tr>
<th></th>
<th>LP</th>
<th>QP</th>
<th>NLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC</td>
<td>Rglpk*, lpSolve*, Rsymphony*</td>
<td>quadprog, ipop</td>
<td>optim(), nlminb()</td>
</tr>
<tr>
<td>QC</td>
<td></td>
<td>Rcplex*</td>
<td></td>
</tr>
<tr>
<td>NLC</td>
<td></td>
<td></td>
<td>donlp2, solnp</td>
</tr>
</tbody>
</table>

* ... integer capability

For a full list of solvers see the CRAN task view *Optimization.*
Solving Optimization Problems (1)

- **lpSolve:**

  ```
  > args(lp)
  function (direction = "min", objective.in, const.mat, const.dir,
  const.rhs, transpose.constraints = TRUE, int.vec, presolve = 0,
  compute.sens = 0, binary.vec, all.int = FALSE, all.bin = FALSE,
  scale = 196, dense.const, num.bin.solns = 1, use.rw = FALSE)
  NULL
  ```

- **quadprog:**

  ```
  > args(solve.QP)
  function (Dmat, dvec, Amat, bvec, meq = 0, factorized = FALSE)
  NULL
  ```

- **Rglpk:**

  ```
  > args(Rglpk_solve_LP)
  function (obj, mat, dir, rhs, types = NULL, max = FALSE, bounds = NULL,
  verbose = FALSE)
  NULL
  ```
Solving Optimization Problems (2)

► Rcplex:

```r
> args(Rcplex)
function (cvec, Amat, bvec, Qmat = NULL, lb = 0, ub = Inf, control = list(),
  objsense = c("min", "max"), sense = "L", vtype = NULL, n = 1)
NULL
```

► optim() from stats:

```r
> args(optim)
function (par, fn, gr = NULL, ..., method = c("Nelder-Mead",
  "BFGS", "CG", "L-BFGS-B", "SANN"), lower = -Inf, upper = Inf,
  control = list(), hessian = FALSE)
NULL
```

► nlminb() from stats:

```r
> args(nlminb)
function (start, objective, gradient = NULL, hessian = NULL,
  ..., scale = 1, control = list(), lower = -Inf, upper = Inf)
NULL
```
A general framework for optimization should be capable of handling several different problem classes in a transparent and uniform way. We define optimization problems as R objects (S3). These objects contain:

- a function $f(x)$ to be optimized: **objective**
 - linear: coefficients c expressed as a ‘numeric’ (a vector)
 - quadratic: a ‘matrix’ Q of coefficients representing the quadratic form as well as a linear part L
 - nonlinear: an arbitrary (R) ‘function’
- one or several **constraints** $g(x)$ describing the feasible set S
 - linear: coefficients expressed as a ‘numeric’ (a vector), or several constraints as a (sparse) ‘matrix’
 - quadratic: a quadratic part Q and a linear part L
 - nonlinear: an arbitrary (R) ‘function’
 - equality ("==") or inequality ("<=", ">="", ">", etc.) constraints
Additionally we have:

- variable **bounds** (or so-called box constraints)
- variable **types** (continuous, integer, mixed, etc.)
- direction of optimization (search for minimum, **maximum**)

Thus, a problem constructor (say for a MIQP) usually takes the following arguments:

```r
function (objective, constraints, bounds = NULL, 
          types = NULL, maximum = FALSE)
```

In ROI this constructor is named `OP()`.
```r
> library("ROI")
ROI: R Optimization Infrastructure
Installed solver plugins: cplex, lp_solve, glpk, quadprog, symphony, nlminb.
Default solver: glpk.

> (constr1 <- L_constraint(c(1, 2), "<", 4))
An object containing 1 linear constraints.

> (constr2 <- L_constraint(matrix(c(1:4), ncol = 2), c("<", "<"),
+       c(4, 5)))
An object containing 2 linear constraints.

> rbind(constr1, constr2)
An object containing 3 linear constraints.

> (constr3 <- Q_constraint(matrix(rep(2, 4), ncol = 2), c(1, 2),
+       "<", 5))
An object containing 1 constraints.
Some constraints are of type quadratic.

> foo <- function(x) {
+   sum(x^3) - seq_along(x) %*% x
+ }

> F_constraint(foo, "<", 5)
An object containing 1 constraints.
Some constraints are of type nonlinear.
```
Examples: Optimization Instances

```r
> lp <- OP(objective = c(2, 4, 3), L_constraint(L = matrix(c(3,
+ 2, 1, 4, 1, 3, 2, 2, 2), nrow = 3), dir = c("<="),
+ rhs = c(60, 40, 80)), maximum = TRUE)
> lp
A linear programming problem with 3 constraints of type linear.

> qp <- OP(Q_objective(Q = diag(1, 3), L = c(0, -5, 0)), L_constraint(L = matrix(c(-4,
+ -3, 0, 2, 1, 0, 0, -2, 1), ncol = 3, byrow = TRUE), dir = rep(">="),
+ rhs = c(-8, 2, 0)))
> qp
A quadratic programming problem with 3 constraints of type linear.

> qcp <- OP(Q_objective(Q = matrix(c(-33, 6, 0, 6, -22, 11.5,
+ 0, 11.5, -11), byrow = TRUE, ncol = 3), L = c(1, 2, 3)),
+ Q_constraint(Q = list(NULL, NULL, diag(1, nrow = 3)), L = matrix(c(-1,
+ 1, 1, 1, -3, 1, 0, 0, 0), byrow = TRUE, ncol = 3), dir = rep("<="),
+ rhs = c(20, 30, 1)), maximum = TRUE)
> qcp
A quadratic programming problem with 3 constraints of type quadratic.
```
The R Optimization Infrastructure (ROI) package promotes the development and use of interoperable (open source) optimization problem solvers for R.

▶ ROI_solve(problem, solver, control, ...)

The main function takes 3 arguments:

- **problem** represents an object containing the description of the corresponding optimization problem
- **solver** specifies the solver to be used ("glpk", "quadprog", "symphony", etc.)
- **control** is a list containing additional control arguments to the corresponding solver

... replacement for additional control arguments

See https://R-Forge.R-project.org/projects/roi/.
ROI Plugins (1)

- ROI is very easy to extend via “plugins” (ROI.plugin.<solver> packages)
- Link between “API packages” and ROI
- Capabilities registered in data base
- Solution canonicalization
- Status code canonicalization
The version which is published on CRAN can handle LP up to MILP and MIQCP problems using the following supported solvers:

- IpSolve (soon)
- ipop (R-Forge)
- quadprog
- Rcplex (R-Forge)
- Rglpk (default)
- Rsymphony

Additional requirements to run ROI:

- slam for storing coefficients (constraints, objective) as sparse matrices
- registry providing a pure R data base system
Examples: Solving LPs

```r
> ROI_solve(lp, solver = "glpk")
$solution
[1] 0.000000 6.666667 16.666667

$objval
[1] 76.66667

$status
$status/code
[1] 0

$status/msg
  solver glpk
code 0
  symbol GLP_OPT
message (DEPRECATED) Solution is optimal. Compatibility status code will be removed in Rglpk soon.
roi_code 0

attr(,"class")
[1] "MIP_solution"
```
> ROI_solve(qcp, solver = "cplex")
$solution
[1] 0.1291236 0.5499528 0.8251539

$objval
[,1]
[1,] 2.002347

$status
$status$code
[1] 0

$status$msg
 solver cplex
code 1
 symbol CPX_STAT_OPTIMAL
message (Simplex or barrier): optimal solution.
roi_code 0

attr("class")
[1] "MIP_solution"
Examples: Computations on Objects

```r
> obj <- objective(qcp)
> obj
function (x)
crossprod(L, x) + 0.5 * .xtQx(Q, x)
<environment: 0x29f34c8>
attr(,"class")
[1] "function"     "Q_objective" "objective"

> constr <- constraints(qcp)
> length(constr)
[1] 3

> x <- ROI_solve(qcp, solver = "cplex")$solution
> obj(x)
      [,1]
[1,] 2.002347
```
Example¹:

```r
> library("fPortfolio")
> data(LPP2005.RET)
> lppData <- 100 * LPP2005.RET[, 1:6]
> r <- mean(lppData)
> r

[1] 0.04307677
```

```r
> foo <- Q_objective(Q = cov(lppData), L = rep(0, ncol(lppData)))
> full_invest <- L_constraint(rep(1, ncol(lppData)), "==", 1)
> target_return <- L_constraint(apply(lppData, 2, mean), "==", +   r)
> op <- OP(objective = foo, constraints = rbind(full_invest, target_return))
> op

A quadratic programming problem with 2 constraints of type linear.
```

¹Portfolio Optimization with R/Rmetrics by Würtz et al. (2009)
Solve the portfolio optimization problem via \texttt{ROI_solve()}

\begin{verbatim}
> sol <- ROI_solve(op, solver = "cplex")
> w <- sol$solution
> round(w, 4)
[1] 0.0000 0.0086 0.2543 0.3358 0.0000 0.4013

> sqrt(t(w) %*% cov(lppData) %*% w)
 [,1]
[1,] 0.2450869

> sol <- ROI_solve(op, solver = "quadprog")
> w <- sol$solution
> round(w, 4)
[1] 0.0000 0.0086 0.2543 0.3358 0.0000 0.4013

> sqrt(t(w) %*% cov(lppData) %*% w)
 [,1]
[1,] 0.2450869
\end{verbatim}
Solve the max-return portfolio optimization problem:

```r
> sigma <- sqrt(t(w) %*% cov(lppData) %*% w)
> zero_mat <- simple_triplet_zero_matrix(ncol(lppData))
> foo <- Q_objective(Q = zero_mat, L = colMeans(lppData))
> maxret_constr <- Q_constraint(Q = list(cov(lppData), NULL), L = rbind(rep(0, + ncol(lppData)), rep(1, ncol(lppData))), c("<=", "<="), c(sigma^2, + 1))
> op <- OP(objective = foo, constraints = maxret_constr, maximum = TRUE)
> op

A quadratic programming problem with 2 constraints of type quadratic.

> sol <- ROI_solve(op, solver = "cplex")
> w <- sol$solution
> round(w, 4)
[1] 0.0000 0.0086 0.2543 0.3358 0.0000 0.4013

> w %*% colMeans(lppData)
[,1]
[1,] 0.04307677
```

Applications
> library("quantreg")
> data(stackloss)
> create_L1_problem <- function(x, j) {
+ len <- 1 + ncol(x) + 2 * nrow(x)
+ beta <- rep(0, len)
+ beta[j + 1] <- 1
+ OP(L_objective(c(rep(0, ncol(x) + 1), rep(1, 2 * nrow(x)))),
+ rbind(L_constraint(cbind(1, as.matrix(x), diag(nrow(x))),
+ -diag(nrow(x))), rep("==", nrow(x)), rep(0, nrow(x))),
+ L_constraint(beta, "==", -1)), bounds = V_bound(li = seq_len(ncol(x) + 1),
+ 1), ui = seq_len(ncol(x) + 1), lb = rep(-Inf, ncol(x) +
+ 1), ub = rep(Inf, ncol(x) + 1), nobj = len))
+ }

Applications
L1 Regression (2)

> ROI_solve(create_L1_problem(stackloss, 4), solver = "glpk")$solution

[1] -39.68985507 0.83188406 0.57391304 -0.06086957 -1.00000000
[6] 5.06086957 0.00000000 5.42898551 7.63478261 0.00000000
[11] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[16] 0.52753623 0.04057971 0.00000000 0.00000000 1.18260870
[21] 0.00000000 0.00000000 0.00000000 0.48695652 1.61739130
[26] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[31] 1.21739130 1.79130435 1.00000000 0.00000000 1.46376812
[36] 0.02028986 0.00000000 0.00000000 2.89855072 1.80289855
[41] 0.00000000 0.00000000 0.42608696 0.00000000 0.00000000
[46] 0.00000000 9.48115942

> rq(stack.loss ~ stack.x, 0.5)

Call:
 rq(formula = stack.loss ~ stack.x, tau = 0.5)

Coefficients:
 (Intercept) stack.xAir.Flow stack.xWater.Temp stack.xAcid.Conc.
 -39.68985507 0.83188406 0.57391304 -0.06086957

Degrees of freedom: 21 total; 17 residual
Outlook and Future Work

- Optimization terminology (What is a solution?)
- Status codes (What is a reasonable set of status codes?)
- File reader for standard formats like MPS.
- Parallel computing and optimizers (e.g., SYMPHONY’s or CPLEX’ parallel solver)
- NLP solvers (optim(), nlminb(), Rsolnp, etc.)
- Interface to NLMINP solver Bonmin?
- AMPL?
- Applications (e.g., fPortfolio, relations, etc.)
Thank you for your attention

Stefan Theußl
Department of Finance, Accounting and Statistics
Institute for Statistics and Mathematics
e-mail: Stefan.Theussl@wu.ac.at
URL: http://statmath.wu.ac.at/~theussl

WU Wirtschaftsuniversität Wien
Augasse 2–6, A-1090 Wien