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Inverting Black-Scholes-Merton 

• Objective of option pricing models is to derive 

an appropriate price. 

• This process can be inverted from a known 

option price to implied volatility. 
(Latane & Rendleman, 1976; Schmalensee & Trippi, 1978) 
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Puzzle of the Volatility Smile 

• Options that differ only by strike should have 

the same implied volatility. 

• “To even talk about volatility smiles is 

schizophrenic.” (Mayhew, 1995) 

• Research and trading experience uncovers 

smiles, smirks, and skews – all indications that 

the model implies multiple volatilities for the 

same underlying asset. 



Source of the Smile 

• Previous explanations: 

– Jump return process 

– Stochastic volatility 

– Market frictions 

– Non-normality of returns 

– “Insurance” against market crashes 

• New contribution: 

–Computational considerations 



Related Literature and Hypothesis 

• Measurement errors in inputs can have 
significant impact on implied volatility.  
(Hentschel, 2003) 

• Small errors in inputs can lead to large 
divergence in implied volatility estimate. 

• This nonlinearity is an example of sensitive 
dependence on initial conditions. 

• Therefore, we posit that computational 
factors contribute significantly to the 
volatility smile. 



Literature Problems 

• Few papers discuss computational matters 

explicitly. 

• Root finding technique and tolerance are rarely 

mentioned. 

• Overwhelming majority of papers on this topic 

make no mention of how implied volatility is 

calculated. 



Closed-form Approximations 

• Several formulas for implied volatility exist. 

– Often require relaxing assumptions or good only in 

specific cases. 

– Useful in spreadsheet and pedagogical 

applications. 

– Provide a starting point for iterative techniques. 



Iterative Root Finding Techniques 

• Five common techniques: 

–Bisection 

–Secant 

–Regula Falsi (False Position) 

–Dekker-Brent (Commonly used by Matlab) 

–Newton-Raphson (Most commonly referenced method) 



Theory 

• The reflection points can be considered ideal 

starting points for the Newton-Raphson 

method. (Manaster & Kohler, 1982) 
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• Theorem 1 discusses conditions for quadratic 

convergence in addition to over- and under-

estimation. 



Numerical Precision 

• Computer models are discrete approximations 

of theoretically continuous processes. 

• Gaussian density cannot be integrated, so 

further approximations are necessary. 

• Results presented here use R (package Rmpfr) 

for quadruple precision arithmetic (128-bit 

storage). 



Process 

• Methodology: 

– Generate Black-Scholes-Merton prices, varying 

exercise price over a wide range of moneyness. 

– Use these “perfect” prices to estimate implied 

volatility. 

– Generate graph of implied volatility. 



Parameters 

• These are the same across all simulations: 

– Spot = $100 

– Strike ranges from $75 to $125 in $5 increments 

– Interest rate = 4% 

– Expiration = 7, 30, 90, and 182 days 

– Volatility = 20% 



Factors 

• Several factors influence the shape of the 

volatility smile: 

– Numerical precision (tolerance of 0.01, 0.00001, 

and machine epsilon 2^-52) 

– Quotation unit (“continuous”, penny, sixteenths) 

– Five root finding techniques 

– Initial input/interval 



Results 



Results: Numerical Precision 
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• The smile dissipates as tolerance shrinks from 
penny (blue) to machine epsilon (green) 



Results 

• Despite full knowledge of the volatility used to 

generate Black-Scholes-Merton prices, the 

inversion process creates a wide variety of 

smiles, skews, and smirks. 

• Root finding technique, initial input, quotation 

rounding, and numerical precision all 

contribute to the shape of the volatility smile. 



Measuring Smiles:Empirical Result 

• Assume that the closest to ATM option reveals 

the true volatility. 

• Use that volatility to price other options and 

calculate sum-of-squared deviations as a 

measure of the smile. 

• Allows comparison of methods. 

• Illustrative example of Ebay: 40% of the smile 

is due to computational factors. 



Implications 

• We cannot remain cavalier in calculating 

implied volatility. 

• There are apparently no choices that solve the 

computational problems. 

• Other factors likely contribute to smile effects, 

but possibly cannot be disentangled from 

computational errors. 



 

We welcome your questions 
and comments. 
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