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Change Points Introduction

Change Point Analysis

The process of detecting distributional changes within time ordered data

I Changes is mean, variance, skew, tail, correlation,...

Framework:

I Retrospective, offline analysis
I Dynamic Programming for adaptive, online analysis

I Multivariate observations

I Estimation: number of change points and their positions
I Hierarchical algorithms

I Divisive: Data are divided
I Agglomerative: Data are merged
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Change Points Cluster Analysis

Cluster Analysis

Change point analysis is similar to cluster analysis

In cluster analysis we also wish to partition the observations into
homogeneous subsets

I Subsets may not be contiguous in time without some constraints
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Change Points Hierarchical Estimation

Hierarchical Estimation: Divisive Progression
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Hierarchical Estimation: Agglomerative Progression
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Change Points Hierarchical Estimation

Change Point Analysis
Given independent, time ordered observations X1,X2, . . . ,Xn ∈ Rd

Partition into k homogeneous, temporally contiguous subsets

I k is unknown
I Size of each subset is unknown

David S. Matteson (matteson@cornell.edu) Change Points and Stationarity 2013 May 17 6 / 32



Change Points Hierarchical Estimation

Change Point Analysis
Given independent, time ordered observations X1,X2, . . . ,Xn ∈ Rd

Partition into k homogeneous, temporally contiguous subsets

I k is unknown
I Size of each subset is unknown

David S. Matteson (matteson@cornell.edu) Change Points and Stationarity 2013 May 17 6 / 32



Change Points Hierarchical Estimation

Change Point Analysis
Given independent, time ordered observations X1,X2, . . . ,Xn ∈ Rd

Partition into k homogeneous, temporally contiguous subsets

I k is unknown
I Size of each subset is unknown

David S. Matteson (matteson@cornell.edu) Change Points and Stationarity 2013 May 17 6 / 32



Change Points Hierarchical Estimation

Change Point Analysis
Given independent, time ordered observations X1,X2, . . . ,Xn ∈ Rd

Partition into k homogeneous, temporally contiguous subsets

I k is unknown
I Size of each subset is unknown

David S. Matteson (matteson@cornell.edu) Change Points and Stationarity 2013 May 17 6 / 32



Change Points Cisco

Cisco Systems Inc.

Monthly log returns from April 1990 to January 2010
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Change Points Cisco

Cisco Systems
Within cluster diagnostics: ÂCF (ri ,t) (top) and ÂCF (r2

i ,t) (bottom)
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Change Points Multivariate Homogeneity

Measuring Multivariate Homogeneity

Suppose X,Y ∈ Rd with X ∼ Fx ⊥⊥ Y ∼ Fy

Let φx(t) = E
(
e i〈t,X〉) and φy (t) = E

(
e i〈t,Y〉) characteristic functions

Define a divergence between Fx and Fy as

E(X,Y; w) =

∫
Rd

|φx(t)− φy (t)|2 w(t) dt,

w(t) denotes an arbitrary positive weight function, for which E exists
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Change Points Multivariate Homogeneity

Equivalent Divergence Measures
Let X and Y be independent, and (X′,Y′) be an iid copy of (X,Y)

Theorem

Suppose that E(|X|α + |Y|α) <∞, for some α ∈ (0, 2], then

E(X,Y;α) =

∫
Rd

|φx(t)− φy (t)|2
(

2πd/2Γ(1− α/2)

α2αΓ((d + α)/2)
|t|d+α

)−1

dt

= 2E|X− Y|α − E|X− X′|α − E|Y − Y′|α

< ∞

I If 0 < α < 2 then E(X,Y;α) = 0 if and only if X and Y are
identically distributed

I If α = 2 then E(X,Y;α) = 0 if and only if EX = EY (equal means)
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Change Points Multivariate Homogeneity

An Empirical Measure (U-statistics)

Let Xn = {Xi : i = 1, . . . , n} and Ym = {Yj : j = 1, . . . ,m} be
independent iid samples from the distribution of X,Y ∈ Rd , respectively,
such that E |X|α,E |Y|α <∞ for some α ∈ (0, 2]

Define

Ê(Xn,Ym;α) =

2

mn

n∑
i=1

m∑
j=1

|Xi − Yj |α −
(

n

2

)−1∑
1≤i<k≤n

|Xi − Xk |α −
(

m

2

)−1 ∑
1≤j<k≤m

|Yj − Yk |α

and

Q̂(Xn,Ym;α) =
mn

m + n
Ê(Xn,Ym;α)
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Change Points E-Divisive Algorithm

The E-Divisive Algorithm: Estimating Location
Aτ = {Z1,Z2, . . . ,Zτ} and Bτ (κ) = {Zτ+1,Zτ+2, . . . ,Zκ}

A change point location τ̂ is estimated as

(τ̂ , κ̂) = argmax
(τ,κ)

Q̂(Aτ ,Bτ (κ);α)

Thus, we maximize mn
n+m Ê(A,B;α) for all subsets A and B:
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n+m Ê(A,B;α) for all subsets A and B:

David S. Matteson (matteson@cornell.edu) Change Points and Stationarity 2013 May 17 12 / 32



Change Points E-Divisive Algorithm

The E-Divisive Algorithm: Estimating Location
Aτ = {Z1,Z2, . . . ,Zτ} and Bτ (κ) = {Zτ+1,Zτ+2, . . . ,Zκ}

A change point location τ̂ is estimated as

(τ̂ , κ̂) = argmax
(τ,κ)

Q̂(Aτ ,Bτ (κ);α)

Thus, we maximize mn
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Change Points Inference

The E-Divisive Algorithm: Inference via Permutation Test

Distribution of test statistic q̂∗ = Q̂(Aτ ,Bτ (κ);α)
∣∣
τ=τ̂

is unknown

Significance of proposed change point measured via permutation test

Randomly permute series, maximize mn
n+m Ê(A,B;α), record and repeat:
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n+m Ê(A,B;α), record and repeat:

David S. Matteson (matteson@cornell.edu) Change Points and Stationarity 2013 May 17 13 / 32



Change Points Inference

The E-Divisive Algorithm: Inference via Permutation Test
Distribution of test statistic q̂∗ = Q̂(Aτ ,Bτ (κ);α)

∣∣
τ=τ̂

is unknown

Significance of proposed change point measured via permutation test

Randomly permute series, maximize mn
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Change Points Inference

The E-Divisive Algorithm: Multiple Change Points

If q̂∗ = Q̂(Aτ ,Bτ (κ);α)
∣∣
τ=τ̂

is insignificant: STOP

If significant, condition on location, and repeat within clusters:
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Change Points Inference

The E-Divisive Algorithm: Multiple Change Points

Once again, perform permutation test

However, only permute within each cluster:
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Change Points ecp Package

The ‘ecp’ R package (CRAN)
Signature:

e.divisive(X, sig.lvl=0.05, R=199, k=NULL, min.size=30, alpha=1)

Arguments:

I X - A T × d matrix representation of a length T time series, with
d-dimensional observations.

I sig.lvl - The significance level used for the permutation test.

I R - The maximum number of permutations to perform in the
permutation test.

I k - The number of change points to return. If this is NULL only the
statistically significant estimated change points are returned.

I min.size - The minimum number of observations btw change points.

I alpha - The index for test statistic.
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Change Points ecp Package

The ‘ecp’ R package (CRAN)

Returned list:

I estimates - The vector containing the estimated change point
locations.

I cluster.number - The number of segments created by the estimated
change points.

I considered.last - The location of the last estimated change point
that was not deemed statistically significant.

I order.found - The order in which the change points were estimated.

I Pvalues - The approximate p-values returned by the permutation test.

Complexity is O(kT 2)
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Change Points S&P 500 Index

S&P 500 Index
The E-divisive procedure was applied to daily S&P 500 Index log returns

S&P 500: May 20, 1999 − April 25, 2011
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Change Points S&P 500 Index

S&P 500 Index: Very significant ARCH effect overall
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Change Points S&P 500 Index

S&P 500 Index: Regime-Switching GARCH model
The E-divisive procedure was applied to daily S&P 500 Index log returns

S&P 500: May 20, 1999 − April 25, 2011
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Change Points S&P 500 Index

S&P 500 Index: Regime-switching GARCH model
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Change Points S&P 500 Index

S&P 500 Index: Apply E-divisive Algorithm

S&P 500: May 20, 1999 − April 25, 2011
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Change Points S&P 500 Index

S&P 500 Index: No ARCH effect within clusters!
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Change Points S&P 500 Index

S&P 500 Index: Gaussian distribution within clusters?
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Change Points S&P 500 Index

Multivariate Change in Correlation
1,000 simulations, 2 CP: Nd(0,Σ),Nd(0, I ),Nd(0,Σ)

Σw.o./noise =

0BBBBB@
1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
ρ ρ 1 · · · ρ
...

...
...

. . .
...

ρ ρ ρ · · · 1

1CCCCCA Σw/noise =

0BBBBB@
1 ρ 0 · · · 0
ρ 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1CCCCCA
E-Divisive Average Rand Index
T d Without Noise With Noise

300
2 0.767 0.774
5 0.912 0.736
9 0.970 0.736

600
2 0.817 0.836
5 0.993 0.631
9 0.998 0.666

900
2 0.970 0.968
5 0.998 0.644
9 0.999 0.612
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Local Stationarity Introduction

Local Stationarity
A d-dimensional process {Yt}Tt=1 is strictly stationary if

Fy1,...,yk
(Y1, . . . ,Yk)=Fy1+τ ,...,yk+τ

(Y1+τ , . . . ,Yk+τ )

∀k, τ ∈ N, in which F denotes a joint distribution function

An equivalent condition is that ∀k, τ ∈ N

φy1,...,yk
(s) = φy1+τ ,...,yk+τ

(s), ∀s ∈ Rd×k

in which φ denotes a joint characteristic function

Piecewise stationary:

∀t, ∃wt ≥ 0, such that all observations in [t −wt , t] are stationarity process

wt defines a one-sided window of homogeneity at t
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Local Stationarity Local Cointegration

Cointegration

Bivariate process Xt =(x1,t , x2,t)′ is cointegrated if

1. Each component is I(1) (unit root nonstationary)

2. ∃β 6= 0 such that x1,t − βx2,t is I(0) (unit root stationary)

Error Correction Model (ECM):

For bivariate I(1) process Xt , with cointegrating vector β = (1,−β)′

one-lag ECM

∆Xt = µ + αβ′Xt−1 + Φ∆Xt−1 + εt

∆Xt = Xt − Xt−1; εt
iid∼ (0,Σ); and µ,α,Φ,Σ are constant matrices
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Local Stationarity Local Cointegration

Local Cointegration

A bivariate process Xt is locally cointegrated with respect to a window of
homogeneity wt if ∀t

1. Xt is I(1), within the interval [t − wt , t] (unit root nonstationary )

2. ∃βt 6= 0 such that ut = x1,t − βtx2,t is I(0) (unit root stationary)

At time t, find largest δ such that (Zt , ut)′ is stationary over [t − δ + 1, t]

I Zt = ∆Xt

I ut = x1t − βx2t

I β estimated via OLS over [t − δ + 1, t]
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Local Stationarity PEP - KO

(a) Pepsi (PEP) and Coca-Cola (KO) adjusted daily closing stock prices
January 2007 through November 2012

(b) [t − wt , t], estimated window of local stationarity at times t
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(c) Cointegrating coefficient β̂(t,wt) over [t − wt , t] (adaptive);
β̂(t, w̄ = 68) over [t − 68, t] (fixed); and β̂t , over [1, t] (cumulative)

(d) Dickey-Fuller test statistic over [t−wt , t] (1, 5, & 10 % critical values)
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Local Stationarity Pairs Trading

(abc) Adjusted daily closing prices from 1/2007 through 11/2012 of
Walmart (WMT) & Target (TGT), Hewlett Packard (HPQ) & Dell
(DELL), and Exxon Mobil (XOM) & Chevron (CVX)
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(def) Estimated window of local stationarity [t − wt , t], at times t
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Local Stationarity Pairs Trading

Pairs Trading: Trading the Spread ût = x1,t − β̂t(ŵt)x2,t

ENTER at |2σ̂t |
EXIT at |12 σ̂t | (gain), |3σ̂t | (loss), or T = t + δmin (time limit)

Mean Return (per trade)
Window/Pair KO-PEP HPQ-DELL WMT-TGT XOM-CVX

Fixed -7.0% 2.5% -6.6% 0.9%
Cumulative 12.0% -0.9% -0.1% -1.8%

Adaptive 21.0% 4.4% 1.1% 43.0%

Table: Mean return (per trade) for the three window methods on each pair

Mean Trade Duration (days)
Window/Pair KO-PEP HPQ-DELL WMT-TGT XOM-CVX

Fixed 7.8 9.7 9.7 8.5
Cumulative 16.9 23.0 13.4 17.8

Adaptive 7.8 8.2 8.3 10.6

Table: Mean trade duration (days) for the three window methods on each pair
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