COVARIANCE FORECASTING FOR PORTFOLIO OPTIMISATION

R/Finance Chicago May 2013

Package aa: repeatable backtest simulation for equities

- Three inputs (universe, library, parameters) all logged in the database
- The user's 'alpha library' operates on zoo/xts objects from SQL database
- Estimation and forecasting of covariance is central

CAPM, the APT, PCA and all that

returns

loadings scores specific returns R = a + B . $f + \epsilon$

- Arbitrage Pricing Theory (APT)
 - If factor 1 is 'the market', CAPM nests into APT •
 - factors 2:k remain to be specified •
- Identifying the factors
 - Regression: cross-sectional loadings known a priori •
 - Size
 - Value etc ...
 - Industry (directional)
 - Regression: timeseries scores known a priori •
 - Market (directional) •
 - Bond yield changes
 - Oil price changes
 - Surprises in general
 - PCA-type: scores are 'portfolio' returns •
 - Exists a choice: 'the answer in finite samples is not clear'
 - **Factor Analysis**
 - **Principal Components Analysis**

These Google trends graphs are for entertainment only!

Principal Components Analysis

Covariance		Eigenvectors		Eigenvalues					
Σ	=		A^T		Λ		Α		
Ι	=	A^{7}	Г. A		eige	envecto	ors are	orthon	ormal

- PCA as 'dimension reduction'
 - eigenvalues are descending in magnitude
 - covariance can be summarised with the first k
 - precisely fits the bill for APT if stated as follows:

$B = A_{.1:k} \cdot \Lambda^{.5}_{1:k,1:k}$	loadings
$f = R . A_{.1:k} . \Lambda_{1:k,1:k}^{5}$	scores (unit variance)
$\epsilon = R - Bf$	specific returns

Remove off-diagonals for specific returns

$$\Sigma^* = A_{.1:k}^T \cdot E_{1:k} \cdot A_{.1:k} + diag(A_{.k+1:n}^T \cdot E_{k+1:n} \cdot A_{.k+1:n})$$

Tweaks

• Part 1 : see package BurStFin

- Model correlation, not variance
- Handling missing data
 - Model 'individuals' (stocks) with complete data
 - 'Regress in' incomplete stocks, factors 1:k'
 - Assign average loadings for lower-ranked factors
- Iterate the process (repeat, starting from Σ*)
- Part 2 : more niceties
 - Optimise the 'factor portfolios'
 - We had $f = A_{.1:k} \cdot \Lambda_{1:k,1:k}^{-.5}$
 - Satisfies orthonormality but does not minimise specific risk
 - Use package quadprog for constrained optimisation
 - Apply Bayesian shrinkage
 - prior: $B = \overline{B}$, stronger for low eigenvalues
 - Missing data in cross-section
 - Frequent occurrence in global data
 - Substitute NA with 0, compute systematic returns, iterate
 - Inverse VIX scaling to make vol stationary
 - VIX is forward-looking option vol and a better forecast
 - Some smoothing is required, though

amberalpha

Testing for breakdown: lag notation

Rolling estimates

- We update models regularly to reflect changes
- Further information can be extracted from them

lag return date model estimation date

au = t - T

• Applied to the factor model estimate

$$R(t) = B(T).f(T,t) + \epsilon(T,t)$$

- Example:
 - Analyse all return(t) through a single estimate T*
 - Analyse single return(t*) through all estimates (T)
 - Take constant-lag (τ*) panels
 - Negative lags are not feasible, they are in-sample
 - Zero lag is usual, means 'using the latest estimate'
 - Positive lags are feasible, mean 'using older estimates'
- Application: consider the fit $R^2(\tau)$

Testing for breakdown: regress returns on components

• An augmented factor regression

Define components of systematic return: $R_m = b_1 \cdot f_1$ etc R(t) = a +

> $c_m(\tau).R_m$ + market (factor 1) $c_s(\tau).R_s$ + systematic (factors 2:k-1) $c_l(\tau).R_l$ + kth factor $c_d(\tau).(R_m - \overline{R_m})$ + deviation from mean $c_a(\tau).(R_m - \overline{R_m})^2$ quadratic

Note: coefficients can be adjusted for 'errors in the variables'

- kth factor: the 'marginal' explanatory power
- deviation: c_d<0 implies mean-reversion
- quadratic: option-like payoff

```
#Testing the null
res <- summary(m1 <- lm(returns ~ Rm + Rs + Rl + Rd+ Rq -1))
linearHypothesis(m1,c(0,0,0,1,1))["Pr(>F)"]
linearHypothesis(m1,diag(5),c(1,1,1,0,0))["Pr(>F)"]
```


stock return

Results from testing the model

• Market and systematic components have coefficients close to 1 at lag 0

Deviation shows

- In-sample, less shrinkage for better fit (as expected)
- Out of sample, more shrinkage for better fit (about -0.07 more, on top of -0.3 applied)
- Evidence of mean-reversion as the coefficient decreases for greater lags
- Quadratic term is pure noise

Results from testing the model

Return variance/forecast variance

- In general the lag-zero normalised variance is very close to 1
- Some evidence of slight under-forecasting of systematic components
- (The trend upwards out-of-sample is period-specific, has no significance)

Testing for breakdown: without adjustments

- Without shrinkage or VIX
 - $R^2(\tau)$ shows
 - Higher in-sample fit (0.68 vs 0.65)
 - Lower out-out-of-sample fit (0.46 vs 0.48)
 - $\sigma^2(\tau)$
 - underprediction is greater (1.49 vs 1.18)
 - These differences fit with expectations

Testing across estimation universes

- Results up to this point are averages across 7 global sectors
- Here examine impact of sector size on the results
- Report level of metric at $\tau = 0$ and change from $\tau = -1$

- R² is lower for larger universes, where k/n is lower
- No evidence of greater out-of-sample breakdown for larger universes

Universe selection

- Requirements
 - No survivorship bias
 - Stable identifiers
 - Stationary screening criteria
- A possible solution
 - Historical index constituents, screened
 - Issues with criteria, licencing
- A specific solution
 - Bloomberg bworld = bworldus+bworldeu+bworldpr
 - Identifier 'unique identifier' or 'open symbology'
 - Screen on
 - Exchange, geographical, sector classification
 - Weight maintains a fairly stationary universe composition
 - Liquidity
 - Alpha data coverage
- Impact of eliminating biases
 - 'distress' type performance is sensitive
 - Turnover is higher

Application 1: forecast-free portfolio construction

• The 'proxy basket'

- A small portfolio of closely matched stocks
- Tracks the target stock with minimum variance
- It is a constrained, optimal version of Λ . Λ^T
- Optional constraints
 - No shorting
 - Weights sum to unity
- Uses
 - Hedging
 - Alpha-generation: mean-reversion and statarb
 - Application to valuation using yield-like variables
 - the basket is a risk-matched benchmark in the same industry
 - It is the single best 'comp' for valuation
 - Regression tests: on return or yield

Minimise:	$w'\Sigma w$
Subject to:	$w_i = 1, \forall w_i > 0$
Example:	Gas Utilities, 2012-10

Application 2: market-neutral tilt portfolio

 $U = E[R] - \lambda \sigma^2 = w. \hat{r} - \lambda w^T. \Sigma. w$

- $\lambda^* = \Sigma^{-1}$. \hat{r}/x_g^* unconstrained solution defines $\lambda^*(x_g^*)$
- Forecast options
 - centred ranks: uniform distribution
 - 'normalise' using inverse cdf
- Constraint options
 - Factor-1 neutral within sector/region
 - Factor 2:k neutral
 - Position size
- Leverage options
 - Gross exposure (x_g^*)
 - Volatility

Solve for λ , wSubject to: $w.B_{.1:n} = 0$ $\Sigma |w| = 0.01$ Equal forecasts

Attribution

- For a single period
 - Variance and return have the same components
 - Market (factor 1)
 - Systematic (factors 2:k)
 - Residual
 - Drilldown into category trees
 - Geographical tree (region, country, state)
 - Industrial classification tree (GICS, ICB, BICS)
 - Long, short subportfolios
 - Option to apply different trees on the two axes
- Multi-period treatment of returns
 - 'Simple' with no compounding, or...
 - 'Smoothing' scheme, redistributing interactions
- Contrast with Brinson/Fachler and extensions
 - No benchmark (cash benchmark)
 - Consequently no selection/allocation/interaction
 - Currency easy:
 - local returns vs local cash (hedged)
 - \$ returns vs \$ cash (unhedged)
 - Leverage easy: premia are self-financing

$$\sigma_{port}^{2} = \sum_{i} \sum_{j} w_{i} \cdot w_{j} \cdot \sigma_{i,j,M|S|R}$$
$$R_{port} = \sum_{i} w_{i} \cdot R_{i,M|S|R}$$

Mean-variance optimisation criticisms

- Markowitz optimisation
 - Ignores sampling errors in the covariance matrix
 - Solves a mis-specified problem
- Portfolio weights
 - Sensitive to sampling errors in covariance
 - Do not follow intuition
 - Are distant from true optimality
- Utility and Sharpe Ratio
 - Variance is underestimated
 - Expected return is overestimated
- 'Solutions' have been proposed
 - But how serious is the problem?
 - Might the answer depend on the risk model type?

position space

$$U(w) = E[R] - b.\,\sigma^2$$

$$SR(w) = \frac{E[R]}{\sigma^2}$$

The trivial read-across from Utility(w) -> Sharpe(w)

Optimisation: a monte-carlo test (1)

- Using 'vanilla' PCA without shrinkage
- From an estimated covariance matrix
 - Generate synthetic data
 - Re-estimate covariance from this
 - Draw expected return from a uniform distribution
 - Optimise
 - subject to industry group neutrality constraint
 - Adjusting risk-aversion to target volatility
 - Repeat for seven global equity sectors
- Results
 - optimum and optimised weights correlate highly
 - True vol is 1.16x expected vol from the estimate
 - Expected return is 1.09x the true optimum

1 sector	t number of stocks in model	는 Control Con	ក្ខុម្ភាពទេជា length of error	ጋ ይ correlation of x* and x+	b b b b c <th>ក ខ្លួំ expected return of optimised</th> <th>t true variance of optimised</th>	ក ខ្លួំ expected return of optimised	t true variance of optimised
2	246	0.31	0.09	0.97	1.32	1.44	1.32
3	306	0.39	0.10	0.97	1.77	1.91	1.29
4	179	0.36	0.10	0.97	1.25	1.35	1.30
5	290	0.37	0.10	0.97	1.71	1.86	1.31
6	196	0.36	0.10	0.97	1.34	1.45	1.30
7	60	0.67	0.26	0.95	1.40	1.57	1.46
mean	213	0.41	0.13	0.96	1.47	1.60	1.34

Optimisation: a monte-carlo test (2)

- Apply Bayesian shrinkage
 - Prior: $B = \overline{B}$, stronger for low eigenvalues
 - Prior weight is 0.3 for factor 1 loading
- Underestimate of volatility is reduced

$$\overline{\left(\frac{\sigma_{true}^2}{\sigma_{estimated}^2}\right)} = 1.23$$
; $\overline{\left(\frac{\sigma_{true}}{\sigma_{estimated}}\right)} = 1.11$

Conclude

- Underestimation of volatility has been exaggerated
- Higher return partially compensates
- Optimisation is not 'eating' alpha or IR in this case

sector	number of stocks in model	euclidean length of optimal portfolio	euclidean length of error	correlation of x* and x+	expected return of optimal	expected return of optimised	true variance of optimised
1	213	0.38	0.11	0.96	1.56	1.59	1.20
2	246	0.31	0.09	0.96	1.25	1.30	1.19
3	306	0.41	0.10	0.97	1.86	1.89	1.16
4	179	0.36	0.11	0.95	1.25	1.29	1.21
5	290	0.36	0.11	0.96	1.77	1.82	1.22
6	196	0.37	0.11	0.96	1.41	1.45	1.21
7	60	0.69	0.28	0.93	1.23	1.32	1.43
mean	213	0.41	0.13	0.95	1.48	1.52	1.23

Optimisation as a projection

- An observation
 - Recall that for unconstrained optimisation

$$\Sigma = A^{T} \cdot \Lambda \cdot A$$

$$\Sigma^{-1} = A^{T} \cdot \Lambda^{-1} \cdot A$$

$$W^{*} = \lambda^{-1} \cdot \Sigma^{-1} \cdot E[R] = const \cdot A^{T} \cdot \Lambda^{-1} \cdot (A \cdot E[R])$$

- Or in recipe form:
 - 1. Project E[R] onto eigenvectors by dotproduct
 - 2. Divide by eigenvalues (!)
 - 3. Scale eigenvectors accordingly and sum
- Step 2 is the error-maximisation property
 - It relates to the condition number of the matrix
 - The correction $\Sigma \rightarrow \Sigma^*$ has reduced this
 - Shrinkage reduces it further
- Modified PCA reduces error amplification
- Industry-level neutrality constraints
 - Reduce systematic risk
 - Condition the solution, largely driven by $E[R]/A_{1.}$

A live application in real time: global equity market neutral

- A contrarian low-frequency strategy run in real time as a 'paper portfolio' performed in-line with backtest
- But too low vol: 8% for 8x leverage and net long, not \$-neutral so not 'market neutral' despite beta=0
- Moral: be careful what your client asks for (diversification, hedging) you might get it and still not like it

Performance: Daily		Portfolio
Total Return 1 Month(s)		2.59
Total Return MTD		0.93
Total Return QTD		1.67
Total Return YTD		23.20
Total Return 3 Month(s)		7.71
Total Return 6 Month(s)		6.95
Total Return 1 Year(s)		23.90
Total Return 2 Year(s)		
Total Return 3 Year(s)		
Risk: Weekly		
Standard Deviation 1 Year(s)		8.07
Semivariance 1 Year(s)		8.35
Beta 1 Year(s)		
Correlation 1 Year(s)		
R-Squared 1 Year(s)		
Information Ratio 1 Year(s)		
Sharpe Ratio vs Risk Free 1 Year(s)		2.95
Tracking Error 1 Year(s)		
	SOL	urce: Bloomberg PORT
Sharpe Ratio	2.91	
Return/trade	0 72%	
Determ / marce	2.200/	
Return/gross	3.30%	
Volatility/gross	1.14%	
Holding period	23 weeks	
Net/gross	6.3%	
.5		a a company instance of

Application: the open source talent contest

- There exists a severe barrier to entry in the capital management industry
 - Backtests have no credibility due to deliberate or unwitting exercise of hindsight options •
 - Paper portfolios are a waste of time trade at the touch, and one can run many •

- Move to a clear and transparent process with detailed reporting
 - Anonymous enrolment into accredited paper portfolios, executed at VWAP •
 - Detailed drill-down reporting on positions, risk, liquidity, performance •
 - Capital introduction / seeding from early investors •

Not just another backtest

- We have seen
 - A framework for rigorous testing of an equity covariance model
 - Applications in backtest simulation of equity market neutral strategies
- The latent demand for an open source equity risk and backtest system
 - The market for trading talent is highly imperfect due to secrecy
 - This is the missing mechanism for matching talent with capital whilst respecting IP
 - A bias-free backtest + paper portfolio executed at VWAP can form the reference point
 - Traction at last for the backtest?

Process: review and timings

amberalpha

Attribution of performance, risk, position, directional vol

- Attributions shown are derived by lagging position with respect to returns, similar to earlier lag of covariance
- Shows that the strategy is contrarian, market neutral, residual risk, and symmetrical across long and short
- The three shown are a subset of approximately 300 tabulations warehoused for rapid browsing

24