Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?

Jiahan Li
Assistant professor of Statistics
University of Notre Dame

Joint work with Wei Wang and Ilias Tsiakas

R/Finance 2013
Bond price and Economic Fundamentals

- Economic fundamentals can predict yield curve.

- Economic fundamentals: more than 100 economic indicators, including industrial production, CPI, money supply, employment rate, …

- Method:

 ![Diagram showing the process of forecasting yield curve](#)
Stock price and Economic Fundamentals

- Economic fundamentals can predict S&P500.

- Economic fundamentals: short-term yield, long-term yield, term spread, default spread, inflation, consumption/wealth, …

- Method: combined forecasts.
Combined forecasts

- K predictive models give K forecasts.
 - Option 1 (simple combination): take the mean, median, or trimmed mean
 - Option 2: take their weighted average, with the weights being determined by the past performance of individual models, or Discounted Mean Squared Error (DMSE).
 \[
 weight_j = \frac{DMSE_j^{-1}}{\sum_{j=1}^{N} DMSE_j^{-1}}
 \]
<table>
<thead>
<tr>
<th>Model</th>
<th>Out-of-sample R-squared (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividend/price</td>
<td>0.34</td>
</tr>
<tr>
<td>Dividend/lagged price</td>
<td>0.26</td>
</tr>
<tr>
<td>Earnings/price</td>
<td>0.36</td>
</tr>
<tr>
<td>Dividend/earnings</td>
<td>-1.42</td>
</tr>
<tr>
<td>Variance (daily)</td>
<td>-12.97</td>
</tr>
<tr>
<td>Book/market</td>
<td>-2.6</td>
</tr>
<tr>
<td>Net equity issuance</td>
<td>-0.91</td>
</tr>
<tr>
<td>Short-term yield</td>
<td>-2.78</td>
</tr>
<tr>
<td>Long-term yield</td>
<td>-3.09</td>
</tr>
<tr>
<td>Long-term bond return</td>
<td>0.33</td>
</tr>
<tr>
<td>Term spread</td>
<td>-2.96</td>
</tr>
<tr>
<td>Default spread</td>
<td>-2.72</td>
</tr>
<tr>
<td>Default spread of returns</td>
<td>-1.1</td>
</tr>
<tr>
<td>Inflation</td>
<td>-0.84</td>
</tr>
<tr>
<td>Consumption/wealth</td>
<td>1.44 *</td>
</tr>
</tbody>
</table>

Combined forecasts

<table>
<thead>
<tr>
<th>Combined forecasts</th>
<th>Out-of-sample R-squared (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>3.58 **</td>
</tr>
<tr>
<td>Median</td>
<td>3.04 **</td>
</tr>
<tr>
<td>Trimmed mean</td>
<td>3.51 **</td>
</tr>
<tr>
<td>DMSE, θ=0.1</td>
<td>3.54 **</td>
</tr>
<tr>
<td>DMSE, θ=0.9</td>
<td>3.49 **</td>
</tr>
</tbody>
</table>

DMSE: This forecasts combination is based on individual models’ past performance, measured by Discounted Mean Squared Error (DMSE). θ is the discounting factor.

Benchmark: random walk
Whether economic fundamentals can predict other asset prices?

- Look abroad

(Photograph: Guy Parsons)
Foreign exchange rates and Economic Fundamentals - Outline

- Economic fundamentals
- Forecasting method:
 - Individual models
 - “Kitchen-sink” model
 - Combined forecasts
 - Efficient “kitchen-sink” model
- Predictability evaluation:
 - Statistical predictability
 - Portfolio returns
Economic fundamentals

- Random Walk (RW): $x_t = 0$

$$r_{t+1} = \alpha + e_{t+1}$$

$$\hat{r}_{t+1} = \hat{\alpha} = \text{historical average}$$
Economic fundamentals

- Random Walk (RW): \(x_t = 0 \)
- Uncovered Interest Parity (UIP):
 \[
 x_t = x_{1t} = \Delta (\text{interest rate})_t
 \]
 - The difference in interest rates between two countries is equal to the expected change in exchange rates between the countries' currencies.

 Otherwise, arbitrage opportunity exists.

- Most studies indicate the violation of this condition.
- Carry trade strategy.
Economic fundamentals

- Random Walk (RW): $x_t = 0$
- Uncovered Interest Parity (UIP):
 \[x_t = x_{1t} = \Delta (\text{interest rate})_t \]
- Purchasing Power Parity (PPP):
 \[x_t = x_{2t} = \Delta (\text{price level})_t - s_t \]
 - law of one price.
 - identical goods will have the same price in different markets.
Economic fundamentals

- Random Walk (RW): $x_t = 0$
- Uncovered Interest Parity (UIP):
 \[x_t = x_{1t} = \Delta \text{(interest rate)}_t \]
- Purchasing Power Parity (PPP):
 \[x_t = x_{2t} = \Delta \text{(price level)}_t - s_t \]
- Monetary Fundamentals (MF):
 \[x_t = x_{3t} = \Delta \text{(money supply)}_t - \Delta \text{(national income)}_t - s_t \]
- Taylor Rule (TR):
 \[x_t = x_{4t} = 1.5 \Delta \text{(inflation)}_t + 0.1 \Delta \text{(output gap)}_t - 0.1 \Delta \text{(price level)}_t - 0.1s_t \]
Model, Return and Econ Fundamentals

- P_t: nominal exchange rate (domestic price of 1 foreign currency unit)

- $r_{t+1} = \log(P_{t+1}) - \log(P_t)$ is the foreign exchange rate return

- Different models have different predictor, x_t, in the predictive regression

 \[r_{t+1} = \alpha + \beta x_t + e_{t+1} \]

- Economic fundamentals: x_t
Foreign exchange rates and Economic Fundamentals - method

1. Individual models: \(r_{t+1} = \alpha + \beta x_t + e_{t+1} \)

2. “Kitchen sink” regression: include \(x_{1t}, x_{2t}, x_{3t}, x_{4t} \) in a multiple regression

3. Combined forecasts: generate forecasts from individual models.
 - Simple combined forecasts: take the mean, median, or trimmed mean
 - Take their weighted average, with the weights are determined by the past performance of individual models (DMSE).
Data

- Monthly FX data ranging from January 1976 to June 2012 (~ 35 years).
- The 10 most liquid (G10) currencies in the world:
 - Australian dollar
 - Canadian dollar
 - Swiss franc
 - Deutsche mark
 - British pound
 - Japanese yen
 - Norwegian kroner
 - New Zealand dollar
 - Swedish kronor
 - US dollar
- 9 exchange rates.
Out-of-sample forecasts

- The first FX return to be predicted is in January 1986 (using a 10 year estimation window)
- Keep updating estimation window.
Statistical evaluation

- Out-of-sample R^2

$$R^2_{os} = 1 - \frac{\sum_{t=1}^{T-1} (\hat{r}_{t+1} - r_{t+1})^2}{\sum_{t=1}^{T-1} (\bar{r}_{t+1} - r_{t+1})^2}.$$

$
\hat{r}_{t+1}$ is the model’s forecast, $
\bar{r}_{t+1}$ is the benchmark’s forecast (historical average).

- Positive out-of-sample R^2

\Leftrightarrow the lower alternative model’s error
\Leftrightarrow the better the alternative model
Out-of-sample R square (benchmark: random walk)

<table>
<thead>
<tr>
<th></th>
<th>AUD</th>
<th>CAD</th>
<th>CHF</th>
<th>EUR</th>
<th>GBP</th>
<th>JPY</th>
<th>NOK</th>
<th>NZD</th>
<th>SEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined - DMSE(0.9)</td>
<td>-0.068</td>
<td>0.060</td>
<td>0.468</td>
<td>-0.591</td>
<td>0.028</td>
<td>0.990</td>
<td>-0.392</td>
<td>-0.023</td>
<td>-1.010</td>
</tr>
<tr>
<td>Combined - DMSE(1.0)</td>
<td>-0.403</td>
<td>-0.196</td>
<td>0.605</td>
<td>-0.429</td>
<td>0.244</td>
<td>0.777</td>
<td>-0.495</td>
<td>-0.137</td>
<td>-0.915</td>
</tr>
<tr>
<td>Combined - Mean</td>
<td>-0.382</td>
<td>-0.245</td>
<td>0.615</td>
<td>-0.414</td>
<td>0.181</td>
<td>0.795</td>
<td>-0.468</td>
<td>-0.110</td>
<td>-0.938</td>
</tr>
<tr>
<td>Combined - Median</td>
<td>-0.195</td>
<td>0.071</td>
<td>-0.613</td>
<td>-0.535</td>
<td>-0.370</td>
<td>0.563</td>
<td>-0.738</td>
<td>0.702</td>
<td>-0.108</td>
</tr>
</tbody>
</table>

Uncovered interest rate parity
-0.968 | 0.528 | -1.806 | -3.337 | -3.387 | -0.417 | -2.736 | -0.851 | -6.376

Purchasing power parity
-1.831 | -1.308 | -0.964 | -1.380 | 0.490 | -0.110 | -1.336 | -1.550 | -0.443

Taylor rule
-1.553 | -2.115 | -2.385 | -2.134 | -2.959 | -1.019 | -1.745 | -0.543 | -1.671

Monetary fundamentals
-1.879 | -1.643 | -0.513 | -2.751 | -0.881 | -1.487 | -2.639 | -1.809 | -0.496

"Kitchen sink"
Economic evaluation

- Mean-variance strategy

 - Mean-variance strategy: target volatility (annualized) = 10%
 - Covariance estimates: sample covariance
 - We also implement 1/N strategy and momentum strategy
<table>
<thead>
<tr>
<th>Sharpe Ratio</th>
<th>Mean (%)</th>
<th>Volatility (%)</th>
<th>Sharpe Ratio</th>
<th>Performance Fee (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined - DMSE(0.9) (the best one)</td>
<td>11.083</td>
<td>12.761</td>
<td>0.498</td>
<td>71</td>
</tr>
<tr>
<td>Uncovered interest rate parity</td>
<td>9.597</td>
<td>12.521</td>
<td>0.389</td>
<td>-134</td>
</tr>
<tr>
<td>Purchasing power parity</td>
<td>8.886</td>
<td>12.500</td>
<td>0.333</td>
<td>-282</td>
</tr>
<tr>
<td>Taylor rule</td>
<td>8.226</td>
<td>11.685</td>
<td>0.300</td>
<td>-196</td>
</tr>
<tr>
<td>Monetary fundamentals</td>
<td>9.851</td>
<td>12.328</td>
<td>0.416</td>
<td>-102</td>
</tr>
<tr>
<td>"Kitchen sink"</td>
<td>8.553</td>
<td>11.537</td>
<td>0.332</td>
<td>-224</td>
</tr>
<tr>
<td>Random walk</td>
<td>11.039</td>
<td>12.770</td>
<td>0.494</td>
<td></td>
</tr>
<tr>
<td>1/N strategy</td>
<td>6.653</td>
<td>7.111</td>
<td>0.271</td>
<td>-177</td>
</tr>
<tr>
<td>Momentum strategy</td>
<td>6.867</td>
<td>7.897</td>
<td>0.271</td>
<td>-177</td>
</tr>
</tbody>
</table>
“Efficient kitchen-sink” model

- What is the problem with “kitchen-sink” model?

\[r_{t+1} = \alpha + \beta_1 x_{1t} + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{4t} + e_{t+1} \]

- More information leads to bad forecasts??

- Let’s examine \(\beta_1, ..., \beta_4 \) in the predictive regression of each currency
“Efficient kitchen-sink” model

- What is the problem with “kitchen-sink” model?

\[r_{t+1} = \alpha + \beta_1 x_{1t} + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{4t} + e_{t+1} \]

- \(\beta_1, \ldots, \beta_4 \) are inflated.

- This motivates shrinkage estimation.
“Efficient kitchen-sink” model

- Constraint least squares that minimizes

\[
\sum_{t=1}^{T} (r_{t+1} - \alpha - \beta_1 x_{1t} - \beta_2 x_{2t} - \beta_3 x_{3t} - \beta_4 x_{4t})^2
\]

subject to constraints: \(\sum_{j=1}^{4} |\beta_j| < s_1 \) and \(\sum_{j=1}^{4} (\beta_j^2) < s_2 \)

- This is the elastic-net regression.

- Consequence: The estimated regression coefficients \((\beta_1, ..., \beta_4)\) are shrunk towards \(0\).
“Efficient kitchen-sink” model

- More robust and stable compared to traditional ones
- Forecasting error-oriented procedure
- Linear model – consistent with many empirical models in economics and finance
Out-of-sample R square (benchmark: random walk)

<table>
<thead>
<tr>
<th></th>
<th>AUD</th>
<th>CAD</th>
<th>CHF</th>
<th>EUR</th>
<th>GBP</th>
<th>JPY</th>
<th>NOK</th>
<th>NZD</th>
<th>SEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient "Kitchen sink"</td>
<td>1.502</td>
<td>1.409</td>
<td>0.329</td>
<td>1.028</td>
<td>1.441</td>
<td>0.056</td>
<td>1.503</td>
<td>1.336</td>
<td>1.829</td>
</tr>
<tr>
<td>Combined - DMSE(0.9)</td>
<td>-0.068</td>
<td>0.060</td>
<td>0.468</td>
<td>-0.591</td>
<td>0.028</td>
<td>0.990</td>
<td>-0.392</td>
<td>-0.023</td>
<td>-1.010</td>
</tr>
<tr>
<td>Combined - DMSE(1.0)</td>
<td>-0.403</td>
<td>-0.196</td>
<td>0.605</td>
<td>-0.429</td>
<td>0.244</td>
<td>0.777</td>
<td>-0.495</td>
<td>-0.137</td>
<td>-0.915</td>
</tr>
<tr>
<td>Combined - Mean</td>
<td>-0.382</td>
<td>-0.245</td>
<td>0.615</td>
<td>-0.414</td>
<td>0.181</td>
<td>0.795</td>
<td>-0.468</td>
<td>-0.110</td>
<td>-0.938</td>
</tr>
<tr>
<td>Combined - Median</td>
<td>-0.195</td>
<td>0.071</td>
<td>-0.613</td>
<td>-0.535</td>
<td>-0.370</td>
<td>0.563</td>
<td>-0.738</td>
<td>0.702</td>
<td>-0.108</td>
</tr>
<tr>
<td>Uncovered interest rate parity</td>
<td>-0.968</td>
<td>0.528</td>
<td>-1.806</td>
<td>-3.337</td>
<td>-3.387</td>
<td>-0.417</td>
<td>-2.736</td>
<td>-0.851</td>
<td>-6.376</td>
</tr>
<tr>
<td>Purchasing power parity</td>
<td>-1.831</td>
<td>-1.308</td>
<td>-0.964</td>
<td>-1.380</td>
<td>0.490</td>
<td>-0.110</td>
<td>-1.336</td>
<td>-1.550</td>
<td>-0.443</td>
</tr>
<tr>
<td>Taylor rule</td>
<td>-1.553</td>
<td>-2.115</td>
<td>-2.385</td>
<td>-2.134</td>
<td>-2.959</td>
<td>-1.019</td>
<td>-1.745</td>
<td>-0.543</td>
<td>-1.671</td>
</tr>
<tr>
<td>Monetary fundamentals</td>
<td>-1.879</td>
<td>-1.643</td>
<td>-0.513</td>
<td>-2.751</td>
<td>-0.881</td>
<td>-1.487</td>
<td>-2.639</td>
<td>-1.809</td>
<td>-0.496</td>
</tr>
<tr>
<td>Sharpe Ratio</td>
<td>Mean (%)</td>
<td>Volatility (%)</td>
<td>Sharpe Ratio</td>
<td>Performance Fee (bps)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficient "Kitchen sink"</td>
<td>15.527</td>
<td>12.455</td>
<td>0.867</td>
<td>546</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined - DMSE(0.9) (the best one)</td>
<td>11.083</td>
<td>12.761</td>
<td>0.498</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncovered interest rate parity</td>
<td>9.597</td>
<td>12.521</td>
<td>0.389</td>
<td>-134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchasing power parity</td>
<td>8.886</td>
<td>12.500</td>
<td>0.333</td>
<td>-282</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taylor rule</td>
<td>8.226</td>
<td>11.685</td>
<td>0.300</td>
<td>-196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monetary fundamentals</td>
<td>9.851</td>
<td>12.328</td>
<td>0.416</td>
<td>-102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Kitchen sink"</td>
<td>8.553</td>
<td>11.537</td>
<td>0.332</td>
<td>-224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random walk</td>
<td>11.039</td>
<td>12.770</td>
<td>0.494</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/N strategy</td>
<td>6.653</td>
<td>7.111</td>
<td>0.271</td>
<td>-177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momentum strategy</td>
<td>6.867</td>
<td>7.897</td>
<td>0.271</td>
<td>-177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cumulative Wealth:

what if you invested $1 in January 1976?
Cumulative Wealth:

what if you invested $1 in January 1976?
Take-home message..

- It’s all about how to process information.
- Traditional regression is in-sample explanatory power-oriented, not forecasting-oriented.
- Remedies: forecasts combinations; shrinkage estimation
- **R package:** lars, elasticnet, glmnet, grpreg
UNIVERSITY OF NOTRE DAME
Applied and computational mathematics and statistics

THANK YOU!