UNIVERSITY OF NOTRE DAME Applied and computational mathematics and statistics

Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?

Jiahan Li Assistant professor of Statistics University of Notre Dame

Joint work with Wei Wang and Ilias Tsiakas

R/Finance 2013

Photo: http://oneinabillionblog.com/tag/green-economy/

Bond price and Economic Fundamentals

- Mönch, E. (2008). Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach. *Journal of Econometrics*, 146(1), 26-43.
- Economic fundamentals can predict yield curve.
- Economic fundamentals: more than 100 economic indicators, including industrial production, CPI, money supply, employment rate, ...

Stock price and Economic Fundamentals

- Rapach, D. E., Strauss, J. K., & Zhou, G. (2010). Out-of-sample equity premium prediction: Combination forecasts and links to the real economy. *Review of Financial Studies*, 23(2), 821-862.
- Economic fundamentals can predict **S&P500**.
- Economic fundamentals: short-term yield, long-term yield, term spread, default spread, inflation, consumption/wealth, ...
- Method: combined forecasts.

Combined forecasts

• *K* predictive models give *K* forecasts.

Option 1 (simple combination): take the mean, median, or trimmed mean

➢ Option 2: take their weighted average, with the weights being determined by the past performance of individual models, or *Discounted Mean Squared Error (DMSE)*.

$$weight_{j} = \frac{DMSE_{j}^{-1}}{\sum_{j=1}^{N} DMSE_{j}^{-1}}$$

• Benchmark: historical average (random model) by Campbell and Thompson, *RFS*, 2007.

Rapach, Strauss, and Zhou(2010)

Model	Out-of-sample				
Model	R-squared (%)				
Dividend/price	0.34				
Dividend/lagged price	0.26				
Earnings/price	0.36				
Dividend/earnings	-1.42				
Variance (daily)	-12.97				
Book/market	-2.6				
Net equity issuance	-0.91				
Short-term yield	-2.78				
Long-term yield	-3.09				
Long-term bond return	0.33				
Term spread	-2.96				
Default spread	-2.72				
Default spread of returns	-1.1				
Inflation	-0.84				
Consumption/wealth	1.44 *				

Combined forecasts	Out-of-sample				
Compilieu forecasis	R-squared (%)				
Mean	3.58 **				
Median	3.04 **				
Trimmed mean	3.51 **				
DMSE, θ=0.1	3.54 **				
DMSE, θ=0.9	3.49 **				

DMSE: This forecasts combination is based on individual models' past performance, measured by **Discounted Mean Squared Error (DMSE)**. θ is the discounting factor.

Benchmark: random walk

Whether economic fundamentals can predict other asset prices?

(Photo: Guy Parsons)

Look abroad

Foreign exchange rates and Economic Fundamentals - Outline

- Economic fundamentals
- Forecasting method:
 - Individual models
 - "Kitchen-sink" model
 - Combined forecasts
 - Efficient "kitchen-sink" model
- Predictability evaluation:
 - Statistical predictability
 - Portfolio returns

• Random Walk (RW): $x_t = 0$

 $r_{t+1} = \alpha + e_{t+1}$ $\hat{r}_{t+1} = \hat{\alpha} = historical \ average$

- Random Walk (RW): $x_t = 0$
- Uncovered Interest Parity (UIP):

 $x_t = x_{1t} = \Delta (interest \ rate)_t$

The difference in interest rates between two countries is equal to the expected change in exchange rates between the countries' currencies.

Otherwise, arbitrage opportunity exists.

- Most studies indicate the violation of this condition.
- Carry trade strategy.

- Random Walk (RW): $x_t = 0$
- Uncovered Interest Parity (UIP):

 $x_t = x_{1t} = \Delta (interest \ rate)_t$

Purchasing Power Parity (PPP):

 $x_t = x_{2t} = \Delta (price \ level)_t - s_t$

- \succ law of one price.
- identical goods will have the same price in different markets.

- Random Walk (RW): $x_t = 0$
- Uncovered Interest Parity (UIP):

 $x_t = x_{1t} = \Delta (interest \ rate)_t$

Purchasing Power Parity (PPP):

 $x_t = x_{2t} = \Delta (price \ level)_t - s_t$

Monetary Fundamentals (MF):

 $x_t = x_{3t} = \Delta (money \ supply)_t - \Delta (national \ income)_t - s_t$

• Taylor Rule (TR):

 $x_t = x_{4t} = 1.5 \Delta (inflation)_t + 0.1 \Delta (output gap)_t$ $- 0.1 \Delta (price level)_t - 0.1s_t$

Model, Return and Econ Fundamentals

- P_t : nominal exchange rate (domestic price of 1 foreign currency unit)
- $r_{t+1} = \log(P_{t+1}) \log(P_t)$ is the foreign exchange rate return
- Different models have different predictor, x_t , in the predictive regression

$$r_{t+1} = \alpha + \beta x_t + e_{t+1}$$

• Economic fundamentals: x_t

Foreign exchange rates and Economic Fundamentals - method

- 1. Individual models: $r_{t+1} = \alpha + \beta x_t + e_{t+1}$
- 2. "Kitchen sink" regression: include x_{1t} , x_{2t} , x_{3t} , x_{4t} in a multiple regression
- 3. Combined forecasts: generate forecasts from individual models.

Simple combined forecasts: take the mean, median, or trimmed mean

➤ Take their weighted average, with the weights are determined by the past performance of individual models (DMSE).

Data

- Monthly FX data ranging from January 1976 to June 2012 (~ 35 years).
- The 10 most liquid (G10) Eurrencies in the world: Australian dollar
 Canadian dollar
 Norwegian kroner
 Swiss franc
 New Zealand dollar
 Deutsche mark
 British pound
 US dollar
- 9 exchange rates.

- The first FX return to be predicted is in January 1986 (using a 10 year estimation window)
- Keep updating estimation window.

Statistical evaluation

Out-of-sample R²

$$R_{os}^2 = 1 - \frac{\sum_{t=1}^{T-1} (\hat{r}_{t+1} - r_{t+1})^2}{\sum_{t=1}^{T-1} (\bar{r}_{t+1} - r_{t+1})^2}.$$

 \hat{r}_{t+1} is the model's forecast, \bar{r}_{t+1} is the benchmark's forecast (historical average).

Positive out-of-sample R²
⇔the lower alternative model's error
⇔the better the alternative model

Out-of-sample R square (benchmark: random walk)					UNIVERSITY OF NOT				
	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK
Combined - DMSE(0.9)	-0.068	0.060	0.468	-0.591	0.028	0.990	-0.392	-0.023	-1.010
Combined - DMSE(1.0)	-0.403	-0.196	0.605	-0.429	0.244	0.777	-0.495	-0.137	-0.915
Combined - Mean	-0.382	-0.245	0.615	-0.414	0.181	0.795	-0.468	-0.110	-0.938
Combined - Median	-0.195	0.071	-0.613	-0.535	-0.370	0.563	-0.738	0.702	-0.108
Uncovered interest rate parity	-0.968	0.528	-1.806	-3.337	-3.387	-0.417	-2.736	-0.851	-6.376
Purchasing power parity	-1.831	-1.308	-0.964	-1.380	0.490	-0.110	-1.336	-1.550	-0.443
Taylor rule	-1.553	-2.115	-2.385	-2.134	-2.959	-1.019	-1.745	-0.543	-1.671
Monetary fundamentals	-1.879	-1.643	-0.513	-2.751	-0.881	-1.487	-2.639	-1.809	-0.496

-11.226-13.052-15.918-22.587 -9.579-18.812-14.267-22.109-16.433

Economic evaluation

Mean-variance strategy

- Mean-variance strategy: target volatility (annualized) = 10%
- Covariance estimates: sample covariance
- We also implement 1/N strategy and momentum strategy

Sharpe Ratio

12 19

	Mean (%)	Volatility (%)	Sharpe Ratio	Performance Fee (bps)
Combined - DMSE(0.9) (the best one)	11.083	12.761	0.498	71
Uncovered interest rate parity	9.597	12.521	0.389	-134
Purchasing power parity	8.886	12.500	0.333	-282
Taylor rule	8.226	11.685	0.300	-196
Monetary fundamentals	9.851	12.328	0.416	-102
"Kitchen sink"	8.553	11.537	0.332	-224
Random walk	11.039	12.770	0.494	
1/N strategy	6.653	7.111	0.271	· ·177
Momentum strategy	6.867	7.897	0.271	-177

• What is the problem with "kitchen-sink" model? $r_{t+1} = \alpha + \beta_1 x_{1t} + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{4t} + e_{t+1}$

• More information leads to bad forecasts ??

• Let's examine $\beta_1, ..., \beta_4$ in the predictive regression of each currency

• What is the problem with "kitchen-sink" model? $r_{t+1} = \alpha + \beta_1 x_{1t} + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{4t} + e_{t+1}$

• β_1, \ldots, β_4 are inflated.

• This motivates shrinkage estimation.

Constraint least squares that minimizes

$$\sum_{t=1}^{T} (r_{t+1} - \alpha - \beta_1 x_{1t} - \beta_2 x_{2t} - \beta_3 x_{3t} - \beta_4 x_{4t})^2$$

subject to constraints: $\sum_{j=1}^{4} |\beta_j| < s_1$ and $\sum_{j=1}^{4} (\beta_j^2) < s_2$

- This is the elastic-net regression.
- Consequence: The estimated regression coefficients $(\beta_1, ..., \beta_4)$ are shrunk towards θ .

• More robust and stable compared to traditional ones

Forecasting error-oriented procedure

Linear model – consistent with many empirical models in economics and finance

Out-of-sample R square (benchmark: random walk)					UNIVERSIT	Y OF NOTR	F DAMF		
	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK
Efficient "Kitchen sink"	1.502	1.409	0.329	1.028	1.441	0.056	1.503	1.336	1.829
Combined - DMSE(0.9)	-0.068	0.060	0.468	-0.591	0.028	0.990	-0.392	-0.023	-1.010
Combined - DMSE(1.0)	-0.403	-0.196	0.605	-0.429	0.244	0.777	-0.495	-0.137	-0.915
Combined - Mean	-0.382	-0.245	0.615	-0.414	0.181	0.795	-0.468	-0.110	-0.938
Combined - Median	-0.195	0.071	-0.613	-0.535	-0.370	0.563	-0.738	0.702	-0.108
Uncovered interest rate parity	-0.968	0.528	-1.806	-3.337	-3.387	-0.417	-2.736	-0.851	-6.376
Purchasing power parity	-1.831	-1.308	-0.964	-1.380	0.490	-0.110	-1.336	-1.550	-0.443
Taylor rule	-1.553	-2.115	-2.385	-2.134	-2.959	-1.019	-1.745	-0.543	-1.671
Monetary fundamentals	-1.879	-1.643	-0.513	-2.751	-0.881	-1.487	-2.639	-1.809	-0.496
"Kitchen sink"	-11.226 -	<u>13.052</u>	<u>-15.918</u>	-22.587	<u>-9.579</u>	<u>-18.812</u>	<u>-14.267 -</u>	-22.109	<u>16.433</u>

Sharpe Ratio

	Mean (%)	Volatility (%)	Sharpe Ratio	Performance Fee (bps)
Efficient "Kitchen sink"	15.527	12.455	0.867	546
Combined - DMSE(0.9) (the best one)	11.083	12.761	0.498	71
Uncovered interest rate parity	9.597	12.521	0.389	-134
Purchasing power parity	8.886	12.500	0.333	-282
Taylor rule	8.226	11.685	0.300	-196
Monetary fundamentals	9.851	12.328	0.416	-102
"Kitchen sink"	8.553	11.537	0.332	-224
Random walk	11.039	12.770	0.494	
1/N strategy	6.653	7.111	0.271	-177
Momentum strategy	6.867	7.897	0.271	77

Cumulative Wealth:

what if you invested \$1 in January 1976 ?

Cumulative Wealth:

what if you invested \$1 in January 1976 ?

Take-home message..

- It's all about how to process information.
- Traditional regression is in-sample explanatory poweroriented, not forecasting-oriented.
- Remedies: forecasts combinations; shrinkage estimation
- **R package:** lars, elasticnet, glmnet, grpreg

UNIVERSITY OF NOTRE DAME Applied and computational mathematics and statistics

THANK YOU!

