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● Standard since Engle (1982) and Bollerslev (1986): Extrapolate

the variability in past returns to the future through a GARCH

model for the conditional variance ht:

ht = ω + α(yt−1 − µ)2 + βht−1

X Parameter estimation by maximum likelihood (R packages

fGarch, rugarch);

X Powerful technique, but using the squared demeaned

return as the unique driver of the time-variation in volatility

has several drawbacks.
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● Ignores the presence of multiple risk regimes, with rapid

transitions (e.g. due to swings in interbank confidence, liquidity)

● Danielsson and Shin (2003):

X Exogenous risk: regimes whereby price changes are due to

reasons outside the control of market participants;

X Endogenous risk: behavior of market players creates

additional risk with respect to the uncertainty of

fundamental news.



Exogenous and endogenous

Introduction
❖ Motivation and

contributions
❖ Motivation and

contributions

❖ Risk regime

❖ Design

❖ Score–based

within–regime dynamics

❖ Outline

Model

Results - Volatility

Results - Correlation

Conclusion

4 / 37

● Example of fire sales in Danielsson, Shin and Zigrand (2011)

due a maximum risk constraint.
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● Single regime GARCH models, extrapolating the past to the

future, are likely to fail when they are perhaps most needed – at

the time of a transition between between a low risk and high

risk regime.

● We study the design of regime–switching volatility–correlation

models for the universe of 15 largest U.S. deposit banks over

the period 1994–2011.

X Dynamics of the transition probabilities:

■ Proposed solution: Specify them as a function of

macro-financial variables: VIX, TED spread, Saint Louis

Financial Stability Index.

X Quid within–regime dynamics in the volatility (and

correlation) parameter?
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● Since Haas et al (2004) it has become standard to model

regime switching GARCH models as:
{

hI
t = ωI + αI(yt−1 − µI)2 + βIhI

t−1

hII
t = ωII + αII(yt−1 − µII)2 + βIIhII

t−1

for both Normal and Student t innovations, which is not

intuitive :
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● An extreme (positive/negative) return is a stronger signal of a

volatility increase under the normal distribution than a fat tailed

distribution ⇒ Different volatility dynamics.

● Example of fat tail realizations: earnings releases.
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● In this paper: The within–regime dynamics in volatility and

correlation are driven by the score of the conditional density

function: change the parameters in the direction that improve

the local likelihood.

X This idea was originally proposed by Creal, Koopman and

Lucas (2012: GAS models: Generalized Autoregressive

Score) and Harvey and Chakravarty (2008: DySco:

Dynamic Score models), and is extended here to regime

switching models.

X Interestingly, the volatility/correlation impact of extreme

returns is downweighted under a fat-tailed distribution and

hence avoids the overstatement of volatility after a once-off

extreme return.
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● Model;

● Results;

● Conclusion.
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● 2 regimes for mean + volatility and 2 regimes for correlation;

● No within–regime dynamics in the mean;

● Two volatility and correlation regimes, conditional density in

each regime is Student t (copula)

ft|t−1(yt; θ) =
N∏

i=1

fit|t−1(yit; θi)

×ct|t−1(F1t|t−1(y1t), . . . , FNt|t−1(yNt); θ∗).

● Across-regime dynamics: macro-financial variables;

● Within–regime dynamics: score.
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● Idea: New parameter value: linear combination of the past

parameter value and an update, whereby the update is such

that it increases the LLH.

● How? The time-variation in the parameter λk
t (e.g. variance hk

it,

correlation ρkt ) is autoregressive and driven by the score

λk
t = ok + ak(λk

t−1 + Sk
t−1∇

k
t−1) + bkλk

t−1,

where ∇k
t is the score of the conditional density function:

∇k
t =

∂ log p(yt|m
k, Hk

t , st = k)

∂λk
t

.

● To avoid path dependence, we take the scores conditional on

knowing the state of the regime.

● Scaling factor: Sk
t = 1 (steepest ascent), Sk

t the inverse of the

conditional variance (Gauss-Newton updating) or Sk
t the inverse

of the conditional standard deviation (Nelson, 1994).
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● The within-regime volatility dynamics are:

hk
it = ωk

i +αk
i (1+3/νki )

νki + 1

[νki − 2] +
[yit−1−µk

i
]2

hk

it−1

(yit−1−µk
i )

2+βk
i h

k
it−1.

● Note:

X ν = ∞: RS-GARCH model of Haas et al (JFEC, 2011, no

path dependence regime specific vol)

X The more fat-tailed the distribution is, the more extreme

observations are downweighted.
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● News impact curve under the Student t score-based conditional

variance model

−4 −2 0 2 4

0
5

10
15

y

w
[v

](
y)

y2

v=Infty
v=10
v=4



Correlation model

Introduction

Model

❖ GAS/DySco

❖ Within–regime

volatility dynamics

❖ Within–regime

correlation dynamics

❖ Across–regime

dynamics

❖ State variables

❖ Estimation

Results - Volatility

Results - Correlation

Conclusion

15 / 37

● A single parameter, assuming equicorrelation:

Rk
t =










1 ρt . . . ρt

ρt 1 . . . ρt

ρt ρt
. . . ρt

ρt ρt . . . 1










Why?

● We focus on a relatively homogenous universe (US deposit

banks);

● Inclusion, deletions sector;

● Simplicity, both in terms of analysis, as computational

convenience (no matrices calculations needed).

● See Engle and Kelly (2012, JBES) for single regime DECO.
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● To make sure that the estimated correlations are bounded, we

specify ρkt as the hyperbolic tangent of an underlying process qkt

with GAS(1,1) dynamics:

ρkt = (exp(2qkt )− 1)/(exp(2qkt ) + 1)).

qkt = ωk
∗ + αk

∗(q
k
t−1 + Sk

t−1∇
k
t−1) + βk

∗q
k
t−1,

where ∇k
t is the score of the Student t copula density function and

Sk
t is the inverse of the conditional standard deviation of the score,

and αk
∗ , β

k
∗ > 0.

● qkt is truncated to ensure positive definiteness of the Rk
t matrix

requiring −1/(N − 1) < ρkt < 1.



Correlation model

Introduction

Model

❖ GAS/DySco

❖ Within–regime

volatility dynamics

❖ Within–regime

correlation dynamics

❖ Across–regime

dynamics

❖ State variables

❖ Estimation

Results - Volatility

Results - Correlation

Conclusion

17 / 37

Sk
t ∇

k
t = mk

t
︸︷︷︸

>0

[

bkt
︸︷︷︸

>0

(
wk

t

(N − 1)N

N∑

i=1

∑

j 6=i

ỹitỹjt − ρkt )+akt (
wk

t

N

N∑

i=1

ỹ2it−1)

]

The score has three main components:

1. The excess value of the cross-product of weighted devolatilized

returns and the conditional correlation: enforces an increase

in the conditional correlation process when the average

cross-product of the devolatilized returns exceeds the

conditional correlation ρkt ,
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● Note the curvature!
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Sk
t ∇

k
t = mk

t
︸︷︷︸

>0

[

bkt
︸︷︷︸

>0

(
wk

t

(N − 1)N

N∑

i=1

∑

j 6=i

ỹitỹjt−ρkt )+akt (
wk

t

N

N∑

i=1

ỹ2it − 1)

]

akt = −ρkt (2 + ρkt (N − 2))

2. Adjustment of ρt toward 0 in case of high dispersion , and

vice versa. The higher the dispersion, the less informative high

values of the cross-products are about increases in correlation.

E.g. the correlation signal of (1, 1) is much stronger than

(1/4, 4), even though their cross-product is the same.
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Sk
t ∇

k
t = mk

t

[

bkt (
wk

t

(N − 1)N

N∑

i=1

∑

j 6=i

ỹitỹjt − ρkt ) + akt (
wk

t

N

N∑

i=1

ỹ2it − 1)

]

3. The weights applied to the devolatilized returns.

wk
t =

N + ν∗
k

ν∗k − 2 + (ỹkt )
′(Rk

t )
−1(ỹkt )
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● The thicker the tails, the more likely it is that abnormally large values of the realized

covariance are due to the heavy-tailed feature of the distribution rather than changes

in correlation, and therefore the smaller the impact relatively to the Gaussian case.
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● Downweighting in function of squared Mahalanobis distance. Correlation coefficient

impacts the curvature and which values are considered as extreme.
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● We assume the states follow a Markov process with the 2× 2

dynamic transition matrix Pi|t. The diagonal elements of this

matrix are parameterized using the logit transformation of the

time-varying quantities πI
it and πII

it :

P(11)it = exp(πI
it)/[1 + exp(πI

it)];

P(22)it = exp(πII
it )/[1 + exp(πII

it )].

πI
it = cIi + dIi xt−1

πII
it = cIIi + dIIi xt−1,

with xt−1 the time t− 1 value of the exogenous variable (VIX, TED

spread, Saint Louis Financial Stability Index).
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● Used as drivers for changes in the transition probabilities

between risk regimes;

X Implied Volatility: VIX

X Credit risk: TED spread (3-month LIBOR - T-bill)

X Saint Louis Financial Stability Index (STLFSI) is defined as

the first principal component of eighteen major financial

time series capturing some aspect of financial stress (7

interest rates, 6 yield spreads, VIX, Merrill Lynch Bond

Market Volatility Index,...).



● Time series of weekly values of the Saint-Louis Financial Stability Index, the TED

spread and the VIX.
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● Inference on regime probabilities through the standard Hamilton

filter;

● Two–step maximum likelihood (copula assumption);

X marginal and copula LLH are tractable, efficient

implementation in c++ (Rcpp; Eddelbuettel and François);

X still complex, because of multiple local optima (DEoptim to

obtain good starting values; Ardia, Mullen, Peterson,

Ulrich).
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Top 15 largest US deposit banks First End

Bank of New York Mellon Corp 2008 2011

Bankamerica Corp 1994 1998

Bank One Corp 1994 2011

Barnett Banks Inc 1994 1997

Capital One Financial Corp 2006 2011

Chemical Banking Corp, Chase Manhattan Corp, JP Morgan Chase & Co 1994 2011

Citicorp 1994 1998

Citigroup 1999 2011

Fifth Third Bancorp 2001 2011

First Union Corp, Wachovia Corp 1994 2008

Fleet Financial Group Inc, Fleet Boston Corp, Fleetboston Financial Corp 1994 2003

Keycorp 1994 2011

Morgan Stanley 2009 2011

National City Corp 1996 2008

Nationsbank Corp, Bankamerica Corp, Bank of America Corp 1994 2011

Norwest Corp 1994 1998

PNC Bank Corp, PNC Financial Services GRP Inc 1994 2011

Regions Financial Corp 2005 2011

Southern National Corp NC, BB&T Corp 2000 2011

Suntrust Banks Inc 1994 2011

US Bancorp 1998 2011

Wells Fargo & Co 1994 2011



● Time series of 1994–2011 weekly values of the mean absolute returns across US

deposit bank holding companies.
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● 28 model specifications are estimatated for each US deposit bank.

● We first study the average standardized BIC of each volatility model.

R1 R2 BIC BIC-STLFSI BIC-TED BIC-VIX

t-constant 0.965

g-GAS 0.933

t-gas 0.923

t-GARCH 0.931

t-constant t-constant 0.947 0.893 0.887 0.832

t-gas t-constant 0.941 0.859 0.83 0.8

t-garch t-constant 0.94 0.855 0.83 0.818

g-gas g-gas 0.935 0.885 0.868 0.854

t-gas t-gas 0.935 0.852 0.825 0.789

t-garch t-garch 0.945 0.855 0.828 0.788
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● Of all models considered, the lowest BIC is always achieved by

a double regime volatility model, with time-varying transition

probabilities.

● The STLFSI, TED spread and VIX are selected 6, 6, and 10

times respectively.

● For shorter return series, at least one of the regimes tends to

be characterized by constant volatility.

● The t-garch model is selected for 8 banks, the t-gas/DySco

model for 10 banks.
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Q2: Dynamics in the t-copula?
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● There does not seem to be much to gain from modeling the

within–regime dynamics, which is in support of the regime

switching constant correlation model of Pelletier (2006), but with

time-varying transition probabilities;

● Best model is a 2-regime model with correlations around 0.42

and 0.75, with time-variation driven by the VIX.



● Time series of predicted probabilities to be in the high correlation regime.

B
on

d 
C

ra
sh

R
us

si
an

 C
ris

is
 +

 L
T

C
M

S
ep

t 1
1

W
or

ld
C

om
 B

an
kr

up
tc

y

B
an

k 
of

 A
m

er
ic

a 
ac

qu
ire

s 
F

le
et

B
os

to
n

C
re

di
t c

ru
nc

h 
du

e 
to

 s
ub

pr
im

es

Le
hm

an
 B

an
kr

up
tc

y

E
ur

op
ea

n 
F

in
an

ci
al

 S
ta

bi
lit

y 
F

ac
ili

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

ba
bi

lit
y 

hi
gh

 c
or

re
la

tio
n 

re
gi

m
e

Jan 1994 May 1998 Sep 2002 Feb 2007 Jun 2011



Conclusion

Introduction

Model

Results - Volatility

Results - Correlation

Conclusion

35 / 37



Conclusion

Introduction

Model

Results - Volatility

Results - Correlation

Conclusion

36 / 37

● Recent literature on exogenous and endogenous risk regimes

implies potential usefulness of regime switching models;

● We study this question for the volatility and correlation regimes

in weekly returns of financial institutions;

● For this, a regime switching volatility–correlation model is

proposed;

● Key feature: within–regime dynamics are driven by the score;

across–regime dynamics by macroeconomic financial time

series;

● Main finding: Strong evidence of regime switches in volatility

and correlation, when using time-varying transition probabilities

(especially VIX).
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