
R PROGRAMMING
FOR FINANCIAL DATA

R/Finance 2013 Workshop
May 17, 2013 Chicago, IL

Jeffrey A. Ryan jeffrey.ryan@lemnica.com

mailto:jeffrey.ryan@lemnica.com
mailto:jeffrey.ryan@lemnica.com

WHAT IS ‘FINANCIAL DATA’

complex

structured
unstructured

shared resource expensive

research dependent

production
big

TWO MAIN TYPES

Reality: little choice in how you get it!

structured

ohlcv, earnings,
TAQ, ...

unstructured

 feeds, news,
filings, ...

MAPPING

The challenge is mapping from raw data sources
into a format that is conducive to both

research and production system. Possibly
(re)used from different languages that R.

Understand your source data
Understand your production needs

Understand R structures
Create usable abstraction layers

MAPPING
Steps to success.

Understand your source data
Understand your production needs

Understand R structures
Create usable abstraction layers

MAPPING
Steps to success.

Understand your source data
Understand your production needs

Understand R structures
Create usable abstraction layers

MAPPING
Steps to success.

Understand your source data
Understand your production needs

Understand R structures
Create usable abstraction layers

MAPPING
Steps to success.

Understand your source data
Understand your production needs

Understand R structures
Create usable abstraction layers

MAPPING
Steps to success.

Today we’ll cover these two with examples

Understand your source data
Understand your production needs

Understand R structures
Create usable abstraction layers

MAPPING
Steps to success.

But first, what data do you have?

Raw Text: SEC, News, Twitter

RAW DATA

Database: Historical, Events, Earnings
APIs: Bloomberg, Reuters, Interactive Brokers

SQL CSV Messages
e.g.

Raw Text: SEC, News, Twitter

RAW DATA

Database: Historical, Events, Earnings
APIs: Bloomberg, Reuters, Interactive Brokers

SQL CSV Messages
e.g.

Read Into R
Technically different talk.

RT_M?

R DATA STRUCTURES

Time Data

Most of R programming in finance relies on time-based
data. We need to understand this very well.

R DATA STRUCTURES

Time

R DATA STRUCTURES

Time
Date

Characters

POSIXct

POSIXlt

R DATA STRUCTURES

Time

Date

Date objects in R
allow for time-zone
agnostic day
representations.

When to use:
Only care about days.

i.e. not “time”

R DATA STRUCTURES

Time

Date

e.g.
as.Date(“2013-05-17”)
Sys.Date()

what’s inside:
structure(15842,
 class=”Date”)

number of days since 1970-01-01

R DATA STRUCTURES

Time

POSIXct

POSIXct objects in R
allow for date and
times. Supports
subseconds and
time-zones.

When to use:
Most often.

R DATA STRUCTURES

Time

POSIXct

e.g.
as.POSIXct(“2013-05-17”)
Sys.time()

what’s inside:
1368748800

number of seconds since 1970-01-01 in UTC*

R DATA STRUCTURES

Time

POSIXct

• watch TZ settings
• TZ is machine dependent
• use Sys.setenv(TZ=)
• always set a TZ

e.g.
Sys.setenv(TZ=”UTC”)

R DATA STRUCTURES

Time

POSIXlt

POSIXlt objects in R
allow for date and
times. Supports
subseconds and
time-zones.

When to use:

need ‘broken down’ time.

R DATA STRUCTURES

Time

POSIXlt

e.g.
as.POSIXlt(“2013-05-17”)

what’s inside:
list(sec=0,
 min=0L,
 hour=0L,
 mday=17L,
 mon=4L,
 year=113L,
 wday=5L,
 yday=136L,
 isdst=0L)similar to C language time_t struct

R DATA STRUCTURES

Time

POSIXlt

• same TZ care required
• very large object
• very slow

R DATA STRUCTURES

Data

vector
matrix

list
data.frame

environment

R DATA STRUCTURES

Data

vector
matrix

list
data.frame

environment

R DATA STRUCTURES

Data

vector contains atomic types (integers, doubles, ...)
list and environment contain objects (vectors, lists, ...)
matrix and data.frames are vectors and lists, respectively

vector
matrix

list
data.frame

environment

Additional Useful Data Objects

R DATA STRUCTURES

data.table xts mmap

A fast, scalable, data.frame. Use it. Carefully.

Additional Useful Data Objects

R DATA STRUCTURES

data.table xts mmap

High performance time-series class.

Additional Useful Data Objects

R DATA STRUCTURES

data.table xts mmap

Memory mapped objects. Fast. Scalable.

The ultimate R object.

ENVIRONMENTS

The ultimate R object.

ENVIRONMENTS

Store all other objects
Pass by reference

Hashed O(1) lookup performance

The ultimate R object.

ENVIRONMENTS

e <- new.env(hash=TRUE)
e$a <- 100

e$a
 [1] 100

The ultimate R object.

ENVIRONMENTS

e <- new.env(hash=TRUE)
e$a <- 100

e$a
 [1] 100

We will use often!

Interfaces in R should behave like R

ABSTRACTIONS

Minimize the learning curve
Keep arguments consistent

Design with your use case in mind - not your data!!!!

Private, shared, read-optimized. fast
Plan your data bottlenecks

High-performance custom local stores

CACHES

PUTTING IT ALL
TOGETHER

Learn By Example!

QUANTMOD
Abstraction Example

getSymbols()

Designed to provide a uniform interface to various
data sources, while maintaining a single entry point

and hiding the data access internals.

Make data management idiot-proof

Make data management idiot-proof

in other words...

getSymbols()

Make data management idiot-proof

getSymbols(..., src=”yahoo”)

getSymbols.yahoo

S3 ‘style’ dispatch. Easy to extend.

.yahoo, .google, .rds, .csv ...

getSymbols()

Make data management idiot-proof

getSymbols(..., src=”foo”)

getSymbols.foo

getSymbols.foo <- function(...) {
 ...
}

FUNCTION CODE

SRC <- “foo”

getSymbols(..., src=SRC)

EQUITY EXAMPLE.
rds. attach. makeActiveBinding

OPTIONS EXAMPLE
mmap + indexing

13F EXAMPLE
mmap struct

PUTTING IT ALL
TOGETHER

A recipe for data success:

1. What do you need the data for?
2. What sources do you use now?
3. Abstract - a la quantmod
4. Leverage firm/existing solutions
5. Build high performance caches

Thanks!

