Accessing Redis Data Caches via Rcpp

Dr Dirk Eddelbuettel

dirk@eddelbuettel.com
@eddelbuettel

R/Finance 2014
Lightning Talk
17 May 2014

Longer version available here

Dirk Eddelbuettel

dirk@eddelbuettel.com
@eddelbuettel
http://dirk.eddelbuettel.com/papers/chirug_may2014_rcppredis.pdf

About Features rredis

Outline

@ Redis

Dirk Eddelbuettel

Features rredis
Overview

Why the hype?

@ Simple: Does one thing, and does it well

@ Fast: Run redis-benchmark to see just how fast

@ Widely used: Twitter, GitHub, Craigslist, StackOverflow, ...
@ Multi-language: Bindings from anything you may use

@ Active: Well maintained and documented

Dirk Eddelbuettel

Features rredis
More generally

We can

@ Read
@ Write

from just about any programming language or shell.

(So far) all we require is string processing.

Dirk Eddelbuettel

About rredis

Data Structures

Redis supports many relevant data types:

@ Strings

@ Hashes

@ Lists

@ Sets

@ Sorted Sets

as well as transactions, key management, pub/sub, embedded
scripting, connection management and more.

Dirk Eddelbuettel

About Features
rredis

Wonderful package by Bryan Lewis that covers (all of ?) Redis

Awesome for things like
redisSet ("myModel", 1lm(someFormula, someData))

(Mostly) efficient enough.
Uses string format exclusively.
Automagically deploys R serialization.

Also used as backend for doRedis

Dirk Eddelbuettel

About Features
Simple helper functions

redisConnect ("someServer.some.net")

rput <- function (X) {
xstr <- deparse (substitute (X))
redisSet (xstr, X)

rget <- function (key) {
val <- redisGet (key)
redisDelete (key)
invisible (val)

Dirk Eddelbuettel

About Features

Even nicer: memoise by Michael Kane

require (rredis)
redisConnect ()

, key=NULL, expire_time=Inf,
=FALSE, envir=parent.frame()) ({

memoize <- function (expr

if (is.null (key)) {
key <- paste (substitute (expr), collapse="")
}
if (redisExists (key)) ({
ret <- redisGet (key)
} else ({
ret <- eval (substitute (expr), en r=envir)
redisSet (key, ret)
}
if (expire_time < Inf) {
redisExpireAt (proj_doc_key,
as.integer (as.POSIXct (Sys.time ()) +texpire_time))

ret

Dirk Eddelbuettel

Time Series RApiSerialize RcppRedis

Outline

9 Speed

Dirk Eddelbuettel

RApiSerialize RcppRedis
Time series

Our basic premise and idea is to deploy disconnected writers
(middleware clients in C, C++, Python, ...) and consumers (R) —
by placing Redis in the middle.

But for “longer” time series the combined cost of deserialization
and parsing is too high in R.

Dirk Eddelbuettel

RApiSerialize RcppRedis

Example

set.seed(123); N <- 2500
x <- xts (100xcumprod (l+rnorm(N)*0.005 +
(runif (N)>0.95) rrnorm (N) x0.025) ,
order.by=Sys.time () +cumsum (exp (3*runif (N))))
plot (x, main="Simulated Series", type='l")

Simulated Series

140 160
| |

120

Mwwﬂ W

L"\qu

100
|

May 17 May17 Mayl7 May17 Mayl7 May17
05:56:05 06:45:12 07:30:06 08:15:17 09:00:00 09:45:05

Dirk Eddelbuettel

RApiSerialize RcppRedis

Writing and Reading

With rredis we set and get the time series as follows:

setAsAscii <- function (dat) {
N <- nrow(dat)

for (i in 1:N) {
redisZAdd ("ex:ascii:series",
dat[i,1], dat[i, 1)

getFromAscii <- function() {
xx <- do.call (rbind,
redisZRange ("ex:ascii:series", 0, -1))
xt <- xts(xx[,-11,
order.by=as.POSIXct (xx[,1], origin="1970-01-01"))

Dirk Eddelbuettel

Time Series RcppRedis

RApiSerialize

A (fairly new) CRAN package we released recently.

It does just one thing: give us serialization and deserialization
from the R API at the C(++) level.

It is used by ReppRedis, and provides it with C-level
(de-)serialization without having to call “up” to R.

Dirk Eddelbuettel

Time Series RApiSerialize
RcppRedis

A (fairly new) (and higly incomplete) CRAN package (as of this
week).

It covers just a couple of commands, but those run rather fast.

Dirk Eddelbuettel

Time Series RApiSerialize

Writing and Reading

setAsBinary <- function (dat) {
redis$zadd ("ex:bin:series", as.matrix (dat))

getFromBinary <- function() {
zz <- redis$zrange ("ex:bin:series", 0, -1)
zt <- xts(zz[,-1],
ler .by=as.POSIXct (zz[,1], origin="1970-01-01"))

Dirk Eddelbuettel

Time Series RApiSerialize

Writing and Reading — Part Two

Jouble zadd(std::string key, Rcpp::NumericMatrix x) {

louble res = 0;
for (int i=0; i<x.nrow(); i++) {
Rcpp: :NumericVector y = x.row(i);

redisReply xreply =
static_cast<redisReply*> (redisCommand (prc_,
"ZADD %s % sb",
key.c_str(),
y[01,
y.begin (),
y.size () xszdb));

checkReplyType (reply, replyInteger_t);
res += static_cast<double> (reply->integer);
freeReplyObject (reply) ;

}

return (res) ;

Dirk Eddelbuettel

Net Effect: demo/simDemo.R

test replications elapsed relative
setAsBinary (dat) 1 0.127 1.000
setAsAscii (dat) 1 100.001 787.409

test replications elapsed relative
getFromBinary () 10 0.031 1.000
getFromAscii () 10 4.792 154.581

Dirk Eddelbuettel

Time Series RApiSerialize
RcppRedis Open Questions

Right now the RcppRedis package straddles three worlds:

@ Strings to communicate with Python, C++, cmdline, ...
@ Raw R strings and (de-)serialization to talk to rredis
@ Binary data (as vectors) for efficient time series storage.

We don'’t plan to provide the cross-product of encodings and
commands, but rather pick and choose.

We now have Shiny apps that slice and dice (near) real-time
series related to trading. And | am not going to say more.

Dirk Eddelbuettel

Time Series RApiSerialize
Redis and Rcpp Summary

This short talk tried to convince you that

@ Redis is cooler than sliced bread.

@ rredis is a wonderful package you should use.
@ Redis also allows binary connection.

@ (Lots of) string-to-numeric conversions are slow.
@ Rcpp is ready, willing and able to help.

@ RcppRedis helps overcome a few bottlenecks.

RcppRedis is open for collaboration. See what it does, see
what it misses, and consider contributing to it.

Dirk Eddelbuettel

	Redis
	About
	Features
	rredis

	Speed
	Time Series
	RApiSerialize
	RcppRedis

