Portfolio Optimization: Price Predictability, Utility Functions, Computational Methods, and Applications

John P. Burkett
Department of Economics
University of Rhode Island
burkett@uri.edu

May 21, 2015
Wanted: a portfolio optimization method that

- exploits asset prices’ predictable features, if they exist
- accommodates changes in the distribution of returns, if they occur
- makes normative use of expected utility theory
- utilizes global optimization methods
- is simple enough for practical application
Cyclically-adjusted price-earnings ratio (P/E10)
Sample selection

For the 25 assets of interest, consistent monthly data on real after-tax total returns start in January 2000. Should all these observations, or just a subset, be used to approximate the distribution of future returns?

The Energy package’s eqdist.etest function rejects the equal distribution hypothesis for a pair of samples with contrasting initial CAPE ratios. It does not reject the hypothesis for a pair of samples with similar initial CAPE ratios.

A sample with an initial CAPE ratio similar to the current one starts in October 2001. It is used in the portfolio optimization process outlined below.
Desiderata for utility as a function of wealth, $U(w)$

Boundedness: Arrow (1965) and Samuelson (1977)

Derivatives alternating in sign: Eeckhoudt and Schlesinger (2006)

- $U^{(1)} > 0$, “non-satiation,” prefer high mean
- $U^{(2)} < 0$, “risk aversion,” prefer low variance
- $U^{(3)} > 0$, “prudence,” prefer positive skewness
- $U^{(4)} < 0$, “temperance,” prefer low kurtosis
- $U^{(5)} > 0$, “edginess,” prefer high fifth central moment
Simple utility functions with the desired properties and useful implications for preferences on gross returns R

$$U(w) = \frac{w}{c+w},$$ where $c > 0$, $w \geq 0$.

It’s easy to show that $0 \leq U \leq 1$ and that $U^{(1)} > 0$, $U^{(2)} < 0$, $U^{(3)} > 0$, $U^{(4)} < 0$, $U^{(5)} > 0$, etc.

Let $w = w_0R$. Then $U(R) = \frac{w_0R}{c+w_0R}$

If $w_0 > 0$, then $U(R) = \frac{R}{(c/w_0)+R}$
Utility functions for two values of c/w_0
Maximizing expected utility

- Gross return \(R \) on portfolio is a function of asset weights.
- Utility is a function of \(R \) and thus asset weights.
- Expected utility depends on the distribution of future returns, approximated by the distribution of past returns.
- Expected utility is maximized by choosing asset weights, using a differential evolution algorithm (Hagström and Binner 2009) implemented in \texttt{DEoptim}.
- Result when, for example, \(c/w_0 = 1/2 \):

<table>
<thead>
<tr>
<th>stock</th>
<th>ctb</th>
<th>acgl</th>
<th>wnc</th>
<th>merc</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>.1047</td>
<td>.6593</td>
<td>.0876</td>
<td>.1484</td>
</tr>
</tbody>
</table>
References

