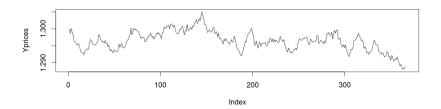
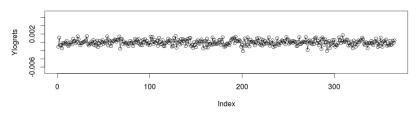
Gaussian Mixture Models for Extreme Events

Mark J. Bennett Graduate Program in Analytics University of Chicago mjbennett@uchicago.edu In Finance we need log returns. A very common R idiom is:

$$Ylogrets = diff(log(Y))$$
 (1)

When we need the inverse, where $(r_1, ..., r_N) = Y logrets$, we use:

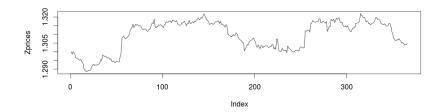

$$\left(Y_1, Y_1 \prod_{j=2}^{2} exp(r_j), ..., Y_1 \prod_{j=2}^{i} exp(r_j), ... Y_1 \prod_{j=2}^{N} exp(r_j)\right)$$
(2)

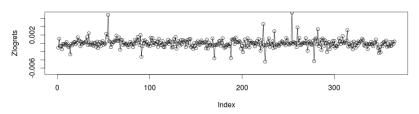

which simplfies to: $Y = (Y_1, ..., Y_N)$. All this is handled by the following R expression:

$$c(Y[1], Y[1] * exp(cumsum(Ylogrets)))$$
 (3)

Basic Simulation from Gaussian Distribution

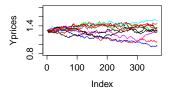
Generated Prices from Log Returns which stay within 3σ

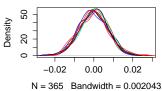


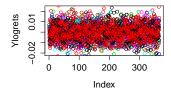


Customized Simulation from Gaussian Mixture Model

Generated Prices from Log Returns with Jumps

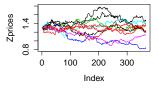


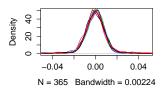


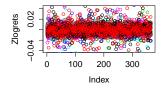


Simulation from Gaussian Model

Paths, Density Plot, Variates

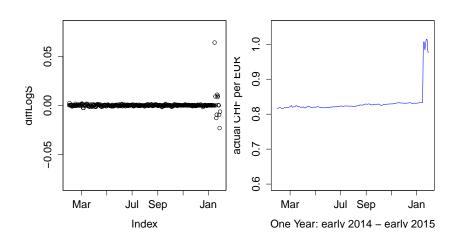




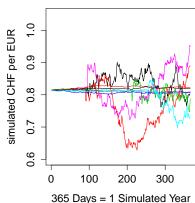


Simulation from Gaussian Mixture Model

Paths, Density Plot, Variates






January 15, 2015 CHF Goes from Pegged to Free!!!

That Event is a Jump or Sampled from Another Distribution

Simulating Extreme Events with Gaussian Mixture Model

