Risk Decomposition for Fund Managers

Matthew Dixon
HedgeFacts
www.hedgefacts.com

R in Finance 2015
May 29th, 2015
Investment management firms seek to measure the contribution of a sub-manager’s positions to the overall Value-at-Risk. These components should:

- be additive across the portfolio
- fully capture the correlations between instrument returns in the portfolio
- account for nonlinear instruments in the portfolio
- be ranked by their net impact on the VaR
Examples of multi-manager funds

Examples of such funds include:

- large multi-strategy funds that employ multiple traders
- large asset management firms such as pension funds
- family offices and endowments
- multi-manager 40-act investment funds
- proprietary trading firms
- fund of funds who receive position transparency
Overview of presentation

- Revisit non-linear parametric methodologies for estimating Value-at-Risk
- Extend instrument Component VaR to non-linear loss functions
- Present a manager Component VaR approach which enables sub-portfolio managers to concentrate on the most significant risk factors
- Evaluate and compare the decomposition approach with other approaches using a representative CTA portfolio
Reference materials

Delta-Gamma approximation

Definition (Delta-Gamma Approximation)

\[dP = \sum_{i,j} \Delta_i dR_i + \frac{1}{2} dR_i \Gamma_{ij} dR_j, \]

where

- \(\Delta_i = \frac{\partial P}{\partial R_i} \) is the sensitivity of the portfolio price to the \(i^{th} \) risk factor
- \(\Gamma_{ij} = \frac{\partial^2 P}{\partial R_i \partial R_j} \) is the second order sensitivity of the portfolio price to the \(i^{th} \) and \(j^{th} \) risk factors.
Cornish-Fisher expansion

Definition (Cornish-Fisher expansion)

\[\text{VaR}_{c, dt}[dP_t] = -\left(\mu_1 + (z + \frac{1}{6}(z^2 - 1)s + \frac{1}{24}(z^3 - 3z)(\kappa - 3) - \frac{1}{36}(2z^3 - 5z)s^2) \right) \sqrt{\mu_2} \]

- \(z = \Phi^{-1}(1 - c) \) is the inverse standard normal cumulative distribution function \(\Phi(z) \) evaluated at \(1 - c \).
- \(s = \frac{\mu^3}{\mu_2^{3/2}} \) is the skewness.
- \(\kappa \) denotes kurtosis and is given by \(\frac{\mu^4}{\mu_2^2} \).
Moments of the distribution

\[\mu_1 := \mathbb{E}[dP_t] = \frac{1}{2} \text{tr}(\Gamma \Sigma) \]
(1)

\[\mu_2 := \mathbb{E}[dP_t - \mu_1]^2 = \Delta^T \Sigma \Delta + \frac{1}{2} \text{tr}(\Gamma \Sigma)^2 \]
(2)

\[\mu_3 := \mathbb{E}[dP_t - \mu_1]^3 = 3 \Delta^T \Sigma \Gamma \Sigma \Delta + \text{tr}(\Gamma \Sigma)^3 \]
(3)

\[\mu_4 := \mathbb{E}[dP_t - \mu_1]^4 = 12 \Delta^T \Sigma (\Gamma \Sigma)^2 \Delta + 3 \text{tr}(\Gamma \Sigma)^4 + 3 \mu_2^2 \]
(4)
Linear component of variance

Definition (Linear Instrument Component VaR)

\[
(\sigma_P^i)^2 = \frac{1}{2} \sum_{k \in K_i} w_i(\Delta_k) (\nabla \Delta \sigma_P^2)_k
\]

where

- \(\nabla \Delta \sigma_P = 2\Delta^T \Sigma \) is the sensitivity of \(\sigma_P^2 \) to \(\Delta \)
- \(w_i(\Delta_k) \) is the exposure of instrument \(i \) to risk factor \(k \) (or equivalently the contribution of instrument \(i \) to \(\Delta_k \))
- \(K_i \) is the set of \(k \) indices corresponding to the non-zero terms of \(w_i(\Delta) \).
Convexity adjusted component of variance

The convexity adjusted contribution of the i^{th} instrument to the standard deviation of the portfolio loss σ_P is

$$
(\sigma_P[i])^2 = \frac{1}{2} \sum_{k \in K_i} w_i(\Delta_k) (\nabla_{\Delta} \sigma_P^2)_k + (w_i(\Gamma) \nabla_{\Gamma} \sigma_P^2)_{kk}
$$

where

- $w_i(\Gamma)$ is a matrix whose $(l, m)^{th}$ elements stores the contribution of instrument i to $\Gamma_{l,m}$
- $\nabla_{\Gamma} \sigma_P^2 = tr(\Sigma \Gamma) \Sigma$ is the matrix of sensitivities to Γ, whose $(l, m)^{th}$ element is just the sensitivity of σ_P^2 to Γ_{lm}.
Non-linear component VaR

Definition (Non-linear Instrument Component VaR)

\[
\text{VaR}_{c,dt}^{[i]}[dP_t] = - \left[\mu_1^{[i]} + \left(z + \frac{1}{6}(z^2 - 1)s + \frac{1}{24}(z^3 - 3z)(\kappa - 3) - \frac{1}{36}(2z^3 - 5z)s^2 \right) \left(\sigma_P^{[i]} \right)^2 / \sigma_P \right],
\]

where the \(i^{th} \) instrument’s contribution to the first moment of the portfolio loss distribution is

\[
\mu_1^{[i]} = \frac{1}{2} \sum_{k \in K_i} (w_i(\Gamma)\Sigma)_{kk}
\]
Definition (Manager Component VaR)

\[
\text{VaR}_{c, dt}[dP_t] = - \left[\hat{\mu}_j + \left(z + \frac{1}{6} (z^2 - 1)s + \frac{1}{24} (z^3 - 3z)(\kappa - 3) - \frac{1}{36} (2z^3 - 5z)s^2 \right) (\hat{\sigma}_j^2 / \sigma_P) \right],
\]

\[
\hat{\mu}_j = \sum_{i \in l_j} \mu_{1i},
\]

and

\[
(\hat{\sigma}_j^2) = \sum_{i \in l_j} (\sigma_{1i}^2)
\]
Composition of the CTA portfolio

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Expiry</th>
<th>Description</th>
<th>Sector</th>
<th>Holding</th>
<th>Currency</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Sep 2014</td>
<td>EURO FX CURR</td>
<td>Currencies</td>
<td>-27</td>
<td>USD</td>
</tr>
<tr>
<td>BP</td>
<td>Sep 2014</td>
<td>BRITISH POUND</td>
<td>Currencies</td>
<td>-52</td>
<td>USD</td>
</tr>
<tr>
<td>HO</td>
<td>Sep 2014</td>
<td>HEATING OIL</td>
<td>Energies</td>
<td>-10</td>
<td>USD</td>
</tr>
<tr>
<td>CL</td>
<td>Sep 2014</td>
<td>CRUDE OIL</td>
<td>Energies</td>
<td>-10</td>
<td>USD</td>
</tr>
<tr>
<td>NG</td>
<td>Sep 2014</td>
<td>HENRY HUB NATURAL GAS</td>
<td>Energies</td>
<td>-10</td>
<td>USD</td>
</tr>
<tr>
<td>G</td>
<td>Sep 2014</td>
<td>LONG GILT</td>
<td>Interest Rates</td>
<td>15</td>
<td>GBP</td>
</tr>
<tr>
<td>FGBL</td>
<td>Sep 2014</td>
<td>Euro-Bund Futures</td>
<td>Interest Rates</td>
<td>14</td>
<td>EUR</td>
</tr>
<tr>
<td>TY</td>
<td>Sep 2014</td>
<td>10 Year U.S. Treasury Notes</td>
<td>Interest Rates</td>
<td>-26</td>
<td>USD</td>
</tr>
<tr>
<td>LH</td>
<td>Oct 2014</td>
<td>LEAN HOGS</td>
<td>Livestock</td>
<td>10</td>
<td>USD</td>
</tr>
<tr>
<td>GC</td>
<td>Aug 2014</td>
<td>GOLD</td>
<td>Metals</td>
<td>-7</td>
<td>USD</td>
</tr>
<tr>
<td>VG</td>
<td>Sep 2014</td>
<td>DJ EURO STOXX 50</td>
<td>Stock Indices</td>
<td>-30</td>
<td>EUR</td>
</tr>
<tr>
<td>ES</td>
<td>Sep 2014</td>
<td>S&P500 EMINI</td>
<td>Stock Indices</td>
<td>50</td>
<td>USD</td>
</tr>
<tr>
<td>L</td>
<td>Mar 2015</td>
<td>90DAY STERLING</td>
<td>Interest Rates</td>
<td>45</td>
<td>GBP</td>
</tr>
<tr>
<td>ED</td>
<td>Mar 2015</td>
<td>EURODOLLAR</td>
<td>Interest Rates</td>
<td>-16</td>
<td>USD</td>
</tr>
<tr>
<td>PUT NG 2.5</td>
<td>Oct 2014</td>
<td>HENRY HUB NATURAL GAS</td>
<td>Energies</td>
<td>215</td>
<td>USD</td>
</tr>
<tr>
<td>PUT NG 2.25</td>
<td>Sep 2014</td>
<td>HENRY HUB NATURAL GAS</td>
<td>Energies</td>
<td>1600</td>
<td>USD</td>
</tr>
<tr>
<td>PUT ES 1270</td>
<td>Sep 2014</td>
<td>S&P500 EMINI</td>
<td>Stock Indices</td>
<td>-170</td>
<td>USD</td>
</tr>
<tr>
<td>PUT CL 85</td>
<td>Sep 2014</td>
<td>CRUDE OIL</td>
<td>Energies</td>
<td>82</td>
<td>USD</td>
</tr>
<tr>
<td>CALL GC 1740</td>
<td>Aug 2014</td>
<td>CRUDE OIL</td>
<td>Metals</td>
<td>2000</td>
<td>USD</td>
</tr>
<tr>
<td>PUT NQ 2450</td>
<td>Aug 2014</td>
<td>NASDAQ 100 EMINI</td>
<td>Stock Indices</td>
<td>-196</td>
<td>USD</td>
</tr>
</tbody>
</table>

Table: Composition of each sub-portfolio in the CTA portfolio.
Verification of component VaR properties

- *Observe the effect of the convexity adjustment by instrument*: Compare the Delta Component VaR of each instrument with the Delta-Gamma Component VaR.

- *Observe the overall effect of the convexity adjustment*: Compare the Delta VaR of the portfolio with the Delta-Gamma VaR.

- *Ensure that each sub-manager tracks the most significant risk factors*: For each sub-portfolio, we rank the instruments that are associated with the most significant risk factors.

- *Ensure that the instrument component delta-gamma VaR is additive*: Check that the instrument component VaRs sum to the overall VaR.
Instrument component VaR

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Expiry</th>
<th>$\Delta - \Gamma$ Component VaR</th>
<th>Δ Component VaR</th>
<th>Risk Factor Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG</td>
<td>Sep 2014</td>
<td>$13,519.09$</td>
<td>$15,849.46$</td>
<td>1</td>
</tr>
<tr>
<td>CL</td>
<td>Sep 2014</td>
<td>$15,762.75$</td>
<td>$18,883.80$</td>
<td>2</td>
</tr>
<tr>
<td>HO</td>
<td>Sep 2014</td>
<td>$14,737.84$</td>
<td>$17,662.77$</td>
<td>4</td>
</tr>
<tr>
<td>BP</td>
<td>Sep 2014</td>
<td>$12,617.50$</td>
<td>$15,002.18$</td>
<td>5</td>
</tr>
<tr>
<td>EC</td>
<td>Sep 2014</td>
<td>$11,766.81$</td>
<td>$14,455.78$</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>Sep 2014</td>
<td>$3,764.95$</td>
<td>$4,659.97$</td>
<td>8</td>
</tr>
<tr>
<td>FGBL</td>
<td>Sep 2014</td>
<td>$3,661.06$</td>
<td>$4,549.75$</td>
<td>9</td>
</tr>
<tr>
<td>VG</td>
<td>Sep 2014</td>
<td>$5,627.52$</td>
<td>$6,753.13$</td>
<td>7</td>
</tr>
<tr>
<td>ED</td>
<td>Mar 2015</td>
<td>107.96</td>
<td>106.10</td>
<td>11</td>
</tr>
<tr>
<td>L</td>
<td>Mar 2015</td>
<td>10.34</td>
<td>73.86</td>
<td>12</td>
</tr>
<tr>
<td>LH</td>
<td>Oct 2014</td>
<td>-476.19</td>
<td>-608.78</td>
<td>13</td>
</tr>
<tr>
<td>TY</td>
<td>Sep 2014</td>
<td>-$2,055.80$</td>
<td>-$2,265.35$</td>
<td>14</td>
</tr>
<tr>
<td>ES</td>
<td>Sep 2014</td>
<td>-$3,545.11$</td>
<td>-$4,181.75$</td>
<td>15</td>
</tr>
<tr>
<td>GC</td>
<td>Aug 2014</td>
<td>$4,691.23$</td>
<td>$5,621.43$</td>
<td>16</td>
</tr>
<tr>
<td>PUT NG 2.25</td>
<td>Sep 2014</td>
<td>$88,568.48$</td>
<td>$108,096.15$</td>
<td>1</td>
</tr>
<tr>
<td>PUT CL 85</td>
<td>Sep 2014</td>
<td>$35,052.87$</td>
<td>$43,922.64$</td>
<td>2</td>
</tr>
<tr>
<td>PUT NG 2.5</td>
<td>Oct 2014</td>
<td>$38,985.18$</td>
<td>$46,780.38$</td>
<td>3</td>
</tr>
<tr>
<td>PUT NQ 2450</td>
<td>Aug 2014</td>
<td>$1,281.51$</td>
<td>-66.31</td>
<td>10</td>
</tr>
<tr>
<td>PUT ES 1270</td>
<td>Sep 2014</td>
<td>-704.78</td>
<td>-$1,780.56$</td>
<td>15</td>
</tr>
<tr>
<td>CALL GC 1740</td>
<td>Aug 2014</td>
<td>-$8,979.55$</td>
<td>-$6,897.13$</td>
<td>16</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>$234,393.65$</td>
<td>$286,217.53$</td>
<td></td>
</tr>
<tr>
<td>99% Portfolio VaR</td>
<td></td>
<td>$234,393.65$</td>
<td>$286,217.53$</td>
<td></td>
</tr>
</tbody>
</table>

Table: VaR is estimated at the 99% percentile.
Component VaR

Manager 1
Manager 2
Manager 3
Sum

Figure: We observe that the sum equals the overall VaR, as shown by the horizontal line.
Independent VaR

Figure: Independent VaR measures the VaR on the sub-portfolios separately and ignores correlations between instruments across sub-portfolios. We observe that the sum does not match the overall VaR, as shown by the horizontal line.
Figure: Incremental VaR is a two step procedure. First the target sub-portfolio is removed from the portfolio and the VaR measured on the residual sub-portfolios. Next this VaR amount is subtracted from the overall VaR. This approach also ignores correlations between instruments across sub-portfolios and we observe that the sum does not match the overall VaR, as shown by the horizontal line.
Conclusion

We’ve presented a manager Component VaR methodology that

- is additive across the portfolio
- fully captures the correlations between instrument returns in the portfolio
- accounts for nonlinear instruments in the portfolio
- ranks instruments in each sub-portfolio by the net impact of the associated risk factors on the overall portfolio