Dimension Reduction Methods for Multivariate Time Series
BigVAR

Will Nicholson
PhD Candidate
wbnicholson.com
github.com/wbnicholson/BigVAR

Department of Statistical Science
Cornell University

May 28, 2015
Acknowledgements

- Joint work with David S. Matteson (Cornell Statistics) and Jacob Bien (Cornell BSCB).

- Initial development of BigVAR package was supported by Google’s Summer of Code in 2014.

- Amazon ec2 usage supported by an AWS in Education Research Grant.
The vector autoregression (VAR) has served as one of the core tools in modeling multivariate time series.

Unfortunately, it is also heavily overparameterized.

In certain scenarios, we may only desire forecasts from a subset of the included series (VARX).

By applying structured penalties in both the VAR and VARX framework, we can substantially improve forecasting performance in a computationally efficient manner.
As an example, suppose that we are interested in forecasting 4 Canadian macroeconomic series: Industrial Production, M1, CA/US Exchange Rate.
Canada has a relatively small, open economy that is very interdependent with the US.

Empirical evidence suggests that US macroeconomic indicators can aid in predicting their Canadian counterparts.

How can we effectively leverage the information from US macroeconomic series to improve Canadian forecasts?
Outline

- Structured Regularization for Vector Autoregression with Exogenous Variables

- Hierarchical Vector Autoregression

- BigVAR
\[
Y_t = \nu + B^{(1)} Y_{t-1} + \ldots + B^{(p)} Y_{t-p} + \Theta^{(1)} x_{t-1} + \Theta^{(s)} x_{t-s} + u_t
\]

- \(y_t \in \mathbb{R}^k\): modeled endogenous series
- \(x_t \in \mathbb{R}^m\): unmodeled exogenous series
- \(p, s\): maximum lag orders
- \(B^{(\ell)} \in \mathbb{R}^{k \times k}\): endogenous coefficient matrix at lag \(\ell\)
- \(\theta^{(j)} \in \mathbb{R}^{k \times m}\): exogenous coefficient matrix at lag \(j\)

The VAR can be viewed as a VARX in which \(m = s = 0\)
VARX Estimation

Provided k, s, m, p are small relative to T, we can forecast \hat{y}_{t+1} via least squares, by solving

$$
\min_{\nu, B, \theta} \| y_t - \nu - \sum_{\ell=1}^{p} B^{(\ell)} y_{t-\ell} - \sum_{j=1}^{s} \theta^{(j)} x_{t-j} \|_2^2, \quad (1)
$$

where

$$
B = [B^{(1)}, \ldots, B^{(p)}], \quad \theta = [\theta^{(1)}, \ldots, \theta^{(s)}].
$$

Equation (1) requires the estimation of $k(kp + ms + 1)$ least squares coefficients!

How can we reduce the parameter space of the VARX?
Existing Dimension Reduction Techniques

- Information Criterion based lag order selection (AIC/BIC) breaks down at high dimensions (Gonzalo and Pitarakis (2002)).

- Classical Bayesian Methods (Bayesian VAR) do not provide sparse solutions.

- Modern Bayesian approaches that impose sparsity (Stochastic Search Variable Selection) scale very poorly.

- Lasso-oriented regularization procedures have generally not been adapted to time-dependent problems.
Structured Lasso Penalties

We append structured convex penalties to (1) of the form

$$\lambda \left(\mathcal{P}_y(B) + \mathcal{P}_x(\theta) \right),$$

(2)

in which

- $\lambda \geq 0$ is a penalty parameter
- $\mathcal{P}_y(B)$ endogenous group penalty structure
- $\mathcal{P}_x(\theta)$ exogenous group penalty structure

Penalties Considered:

- Group Lasso
- Sparse Group Lasso
- Lasso
- Nested Group Lasso
Why Penalized Regression?

- Fast, scalable solution algorithms
- Imposition of Sparsity
- Variable selection and estimation in one step
- Reproducible
- Not reliant on complex or subjective hyperparameters
Group Lasso

- B, θ are partitioned into natural “groupings”

- Within a group, coefficients will either all be nonzero or identically zero.

- We consider two endogenous groupings
 - By coefficient matrix, $B^{(\ell)}$ (Lag Group Lasso)
 - Between “own” (diagonal of $B^{(\ell)}$) and “other lags” (off diagonal elements of $B^{(\ell)}$) (Own/Other Group Lasso)

- Each exogenous series is assigned to its own group
Example Group Lasso Sparsity Patterns (Shaded)

\[(k = 3, p = 5; m = 2; s = 2)\]

\[\mathcal{P}_y(B) = \sqrt{k^2} \sum_{\ell=1}^{p} \|B^{(\ell)}\|_2, \mathcal{P}_x(\theta) = \sqrt{k} \sum_{j=1}^{s} \sum_{i=1}^{m} \|\theta_{.,i}\|_2.\]

Lag Group Lasso VARX

\[\mathcal{P}_y(B) = \sqrt{k} \sum_{\ell=1}^{p} \|B_{on}^{(\ell)}\|_2 + \sqrt{k(k-1)} \sum_{\ell=1}^{p} \|B_{off}^{(\ell)}\|_2\]

Own/Other Group Lasso VARX

wbn8@cornell.edu
Will Nicholson
13
Sparse Group Lasso

- Limitations of the Group Lasso
 - If a group is active, all of its coefficients must be nonzero
 - Computational burden of including many small groups

- The Sparse Group Lasso (Simon et al. (2013)) addresses these shortcomings by adding an additional regularization parameter, α, to allow for within-group sparsity.

- The additional parameter is set based on a heuristic to control the degree of sparsity.
Example Sparse Group Lasso Sparsity Patterns (Shaded)

\[\mathcal{P}_y(B) = (1 - \alpha)(\sqrt{k^2} \sum_{\ell=1}^{p} \|B^{(\ell)}\|_2) + \alpha\|B\|_1, \]

\[\mathcal{P}_x(\theta) = (1 - \alpha)(\sqrt{k} \sum_{i=1}^{s} \sum_{j=1}^{m} \|\theta_{i,j}\|_2) + \alpha\|\theta\|_1. \]

Sparse Lag Group Lasso VARX

\[\mathcal{P}_y(B) = (1 - \alpha)\left(\sqrt{k} \sum_{\ell=1}^{p} \|B^{(\ell)}_{\text{on}}\|_2 + \sqrt{k(k-1)} \sum_{\ell=1}^{p} \|B^{(\ell)}_{\text{off}}\|_2 \right) + \alpha\|B\|_1, \]

Sparse Own/Other Group Lasso VARX
Lasso

- The Lasso is the simplest grouping.

- Every parameter can be viewed as having its own group.

- Does not incorporate the VARX structure, but results in a comparably simpler optimization problem.
Example Lasso Sparsity Pattern (shaded)

\[P_y(B) = \| B \|_1, \quad P_x(\theta) = \| \theta \|_1 \]
Nested Group Structures

- We have previously considered disjoint groupings that form a partition of B, θ.

- In certain scenarios, one might wish to assign a relative important to endogenous versus exogenous variables.

- Our *Endogenous-First* Group Lasso penalty prioritizes endogenous series.

- At a given lag, an exogenous series can enter the model only if their endogenous counterpart is nonzero.
Example Endogenous-First Sparsity Pattern (shaded)

\((k=3, p=4, m=2, s=4) \)

\[
P_{x,y}(B, \theta) = \sum_{\ell=1}^{p} \sum_{j=1}^{k} \left(\| [B_j^{(\ell)}, \theta_j^{(\ell)}] \|_2 + \| \theta_j^{(\ell)} \|_2 \right)
\]

Endogenous-First Group Lasso VARX
Penalty Parameter Selection: “Rolling” Cross-Validation

- Following Banbura et al. (2009), we utilize a selection procedure that respects time dependence.

- Select $\hat{\lambda}$ from a grid of values $\lambda_1, \ldots, \lambda_n$.

- At T_1, we forecast $\hat{y}^{\lambda_i}_{T_1+1}$ for $i = 1, \ldots, n$, and sequentially add observations until time T_2.

- We choose $\hat{\lambda}$ as the minimizer of MSFE.

- T_2 through T is used to evaluate the forecasting accuracy of $\hat{\lambda}$.
We can use our VARX framework to forecast the previously described 4 Canadian macroeconomic series ($k = 4$).

Quarterly, ranging from Q1 1960 to Q4 2007 ($T \approx 200$).

20 US macroeconomic indicators procured from Koop (2011) used as exogenous predictors ($m = 20$).

Quarter 1 of 1977 to Quarter 1 of 1992 is used for penalty parameter selection while Quarter 2 of 1992 to Quarter 4 of 2007 is used for forecast evaluation.
Results

Table: Out of sample MSFE of one-step ahead VARX forecasts of 4 Canadian macroeconomic indicators with 20 exogenous predictors $p = 4, s = 4$

<table>
<thead>
<tr>
<th>Model/ VARX Penalty Structure</th>
<th>MSFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasso</td>
<td>2.996</td>
</tr>
<tr>
<td>Lag Group Lasso</td>
<td>2.988</td>
</tr>
<tr>
<td>Own/Other Group Lasso</td>
<td>2.995</td>
</tr>
<tr>
<td>Sparse Lag Group Lasso</td>
<td>2.959</td>
</tr>
<tr>
<td>Sparse Own/Other Group Lasso</td>
<td>2.984</td>
</tr>
<tr>
<td>Endogenous-First VARX</td>
<td>3.033</td>
</tr>
<tr>
<td>VAR with lag selected by AIC</td>
<td>3.341</td>
</tr>
<tr>
<td>VAR with lag selected by BIC</td>
<td>3.201</td>
</tr>
<tr>
<td>Sample Mean</td>
<td>3.052</td>
</tr>
<tr>
<td>Random Walk</td>
<td>4.545</td>
</tr>
</tbody>
</table>
VAR Results

Table: Out of sample MSFE of one-step ahead VAR forecasts of 4 Canadian Macroeconomic Indicators $p = 4$

<table>
<thead>
<tr>
<th>Model/VAR Penalty Structure</th>
<th>MSFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasso</td>
<td>3.027</td>
</tr>
<tr>
<td>Lag Group Lasso</td>
<td>3.075</td>
</tr>
<tr>
<td>Own/Other Group Lasso</td>
<td>3.303</td>
</tr>
<tr>
<td>Sparse Lag Group Lasso</td>
<td>3.042</td>
</tr>
<tr>
<td>Sparse Own/Other Group Lasso</td>
<td>3.037</td>
</tr>
</tbody>
</table>
Outline

- Structured Regularization for Vector Autoregression with Exogenous Variables

- Hierarchical Vector Autoregression

- BigVAR
Hierarchical VAR (HVAR)

- The previous penalties remain agnostic with regard to lag order selection.
- We propose a *hierarchical* group lasso penalty that takes into account lag order in the VAR context.
- Distant lags are penalized before recent lags
- Allows for varying lag order across marginal models.
- We present three HVAR Penalties:
 - Componentwise
 - Own/Other
 - Elementwise
Maximum lag order can vary across marginal models, but within a series, all components have the same maximum lag.

$$\mathcal{P}_y(B) = \sum_{i=1}^{k} \sum_{\ell=1}^{p} \| B_{i}^{(\ell:p)} \|_2$$
Componentwise HVAR

Maximum lag order can vary across marginal models, but within a series, all components have the same maximum lag.

\[P_y(B) = \sum_{i=1}^{k} \sum_{\ell=1}^{p} \| B_i^{(\ell:p)} \|_2 \]
Componentwise HVAR

Maximum lag order can vary across marginal models, but within a series, all components have the same maximum lag.

$$P_y(B) = \sum_{i=1}^{k} \sum_{\ell=1}^{p} \|B_{i}^{(\ell:p)}\|_2$$

$$B^{(1)}$$

$$\cdots$$

$$B^{(p)}$$
Componentwise HVAR

Maximum lag order can vary across marginal models, but within a series, all components have the same maximum lag.

\[P_y(B) = \sum_{i=1}^{k} \sum_{\ell=1}^{p} \| B_i^{(\ell:p)} \|_2 \]

\[\begin{array}{c}
\begin{array}{c}
B^{(1)} \\
\cdots \\
B^{(p)}
\end{array}
\end{array} \]
Own/Other HVAR

Similar to Componentwise, but within a lag prioritizes “own” lags over “other” lags.

\[P_y(B) = \sum_{i=1}^{k} \sum_{\ell=1}^{p} \left[\| B_{i}^{(\ell:p)} \|_2 + \| (B_{i,-i}^{(\ell)}, B_{i}^{([\ell+1]:p)}) \|_2 \right] \]
Own/Other HVAR

Similar to Componentwise, but within a lag prioritizes “own” lags over “other” lags.

\[
P_y(B) = \sum_{i=1}^{k} \sum_{\ell=1}^{p} \left[\|B^{(\ell:p)}_i\|_2 + \|(B^{(\ell)}_{i,-i}, B^{([\ell+1]:p)}_i)\|_2 \right]
\]
Own/Other HVAR

Similar to Componentwise, but within a lag prioritizes “own” lags over “other” lags.

\[P_y(B) = \sum_{i=1}^{k} \sum_{\ell=1}^{p} \left[\| B^{(\ell:p)}_i \|_2 + \| (B^{(\ell)}_{i,-i}, B^{(\ell+1:p)}_i) \|_2 \right] \]
Own/Other HVAR

Similar to Componentwise, but within a lag prioritizes “own” lags over “other” lags.

\[P_y(B) = \sum_{i=1}^{k} \sum_{\ell=1}^{p} \left[\| B^{(\ell:p)}_{i} \|_2 + \| (B^{(\ell)}_{i,-i}, B^{([\ell+1]:p)}_{i}) \|_2 \right] \]
Elementwise HVAR

The most general structure: in each marginal model, each series may have its own maximum lag.

\[\mathcal{P}_y(B) = \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{\ell=1}^{p} \|B_{i \ell}^{(\ell:p)}\|_2 \]
Elementwise HVAR

The most general structure: in each marginal model, each series may have its own maximum lag.

\[P_y(B) = \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{\ell=1}^{p} \| B_{ij}^{(\ell:p)} \|_2 \]
Elementwise HVAR

The most general structure: in each marginal model, each series may have its own maximum lag.

\[\mathcal{P}_y(B) = \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{\ell=1}^{p} \| B_{ij}^{(\ell:p)} \|_2 \]

\[B^{(1)} \quad \cdots \quad B^{(p)} \]
Elementwise HVAR

The most general structure: in each marginal model, each series may have its own maximum lag.

\[P_y(B) = \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{\ell=1}^{p} \|B^{(\ell:p)}_{ij}\|_2 \]
We consider forecasting 168 macroeconomic indicators (the “Large” model of Koop (2011), \(k = 168, T \approx 200, p = 13 \))

<table>
<thead>
<tr>
<th>Class</th>
<th>Method</th>
<th>MSFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAR</td>
<td>Componentwise</td>
<td>104.143</td>
</tr>
<tr>
<td></td>
<td>Own-other</td>
<td>93.004</td>
</tr>
<tr>
<td></td>
<td>Elementwise</td>
<td>93.172</td>
</tr>
<tr>
<td>VAR</td>
<td>Lasso</td>
<td>103.555</td>
</tr>
<tr>
<td></td>
<td>Lag-weighted lasso</td>
<td>104.244</td>
</tr>
<tr>
<td>Other</td>
<td>Sample mean</td>
<td>120.120</td>
</tr>
<tr>
<td></td>
<td>Random walk</td>
<td>212.368</td>
</tr>
</tbody>
</table>

wbn8@cornell.edu Will Nicholson
Outline

▶ Structured Regularization for Vector Autoregression with Exogenous Variables

▶ Hierarchical Vector Autoregression

▶ BigVAR
BigVAR

- R package designed for penalized regression in a multivariate time series setting.

- All solution algorithms are optimized for use in time-dependent problems, written in C++ and linked via Rcpp.

- Utilizes s4 object classes.

- User-friendly interface.
Implementation Example (HVAR)

We consider forecasting 20 US Macroeconomic Indicators: the “Medium” model of Koop (2011)
constructModel creates an s4 object of class BigVAR

```r
library(BigVAR)
mod1 = constructModel(Y, p = 4, struct = "None", gran = c(5, 10), verbose = FALSE)
```

Arguments:

- `Y`: $T \times k$ time series or $T \times (k + m)$ endogenous and exogenous series
- `p`: maximum lag order for endogenous coefficients
- `struct`: Structured Penalty
- `gran`: Penalty Grid Options (depth and number of penalty parameters)
- `verbose`: option to display a progress bar
- `VARX` (optional): VARX specifications (k and s)

For other (non-required) options see the package manual
Struct Options

<table>
<thead>
<tr>
<th>Struct Argument</th>
<th>Penalty</th>
<th>VAR</th>
<th>VARX</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Lag”</td>
<td>Lag Group Lasso</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>“Diag”</td>
<td>Own/Other Group Lasso</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>“SparseLag”</td>
<td>Lag Sparse Group Lasso</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>“SparseDiag”</td>
<td>O/O Sparse Group Lasso</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>“None”</td>
<td>Lasso</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>“EF”</td>
<td>Endogenous-First VARX</td>
<td>.</td>
<td>X</td>
</tr>
<tr>
<td>“HVARC”</td>
<td>Componentwise Hierarchical</td>
<td>X</td>
<td>.</td>
</tr>
<tr>
<td>“HVAROO”</td>
<td>Own/Other Hierarchical</td>
<td>X</td>
<td>.</td>
</tr>
<tr>
<td>“HVARELEM”</td>
<td>Elementwise Hierarchical</td>
<td>X</td>
<td>.</td>
</tr>
<tr>
<td>“Tapered”</td>
<td>Lag Weighted Lasso</td>
<td>X</td>
<td>.</td>
</tr>
</tbody>
</table>
Estimation

- Fit models with the BigVAR method: `cv.BigVAR`

- Performs rolling cross validation, forecast evaluation, and compares against AIC, BIC, sample mean, and random walk benchmarks.

- Returns an object of class `BigVAR.results`, which inherits class `BigVAR`.
res = cv.BigVAR(mod1)
res
*** BIGVAR MODEL Results ***
Structure
[1] "None"
Maximum Lag Order
[1] 4
Optimal Lambda
[1] 28.663
Grid Depth
[1] 5
Index of Optimal Lambda
[1] 10
In-Sample MSFE
[1] 21.474
BigVAR Out of Sample MSFE
[1] 12.221
*** Benchmark Results ***
Conditional Mean Out of Sample MSFE
[1] 14.876
AIC Out of Sample MSFE
[1] 22.188
BIC Out of Sample MSFE
[1] 12.995
RW Out of Sample MSFE
[1] 29.14
Diagnostics

- The end-user has some flexibility with regard to the granularity of the penalty grid.

- Ideally, $\hat{\lambda}$ should be near the middle of the grid, to ensure that it is deep enough.

- If it is at the boundary, increasing the first parameter of gran may improve forecast performance.

- However, too large of a value will unnecessarily increase computation time.

- `plot.BigVAR.Results` can be used to visualize this relationship.
Diagnostics

plot(res)
mod1@Granularity = c(25, 10)
res2 <- cv.BigVAR(mod1)
mean(res2@OOSMSFE)

[1] 12.19338

plot(res2)
Other Capabilities

- h-step ahead forecasts can be obtained by the `predict` method

```r
# Forecasts for GDP, CPI, Federal Funds Rate
predict(res2, 1)[1:3, ]
```

```r
## [1] -0.1916194  0.6542203 -0.3422589
```
Other Capabilities

- Sparsity Plots depicting nonzero coefficients with `SparsityPlot.BigVAR.results`

```
SparsityPlot.BigVAR.results(res2)
```

Sparsity Pattern Generated by BigVAR

```
B(1)  B(2)  B(3)  B(4)
```
Future Extensions

- Alternative cross validation procedures; incorporation of online learning.

- Extending BigVAR to incorporate structural econometric modeling.

- Penalized Maximum Likelihood as an alternative to least squares.
Our Papers
