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About myself 

• Associate Professor of Finance and 
Econometrics at Free University of Brussels 
and Amsterdam; 

• Research on developing econometric 
methodology to solve problems in finance.  

• R packages to which I contributed: 
highfrequency, PeerPerformance, 
PerformanceAnalytics, PortfolioAnalytics, CIP, 
DEoptim; 
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Roadmap (i) 

• “There are old traders, there are bold traders, but there are no old 
bold traders” 

• Focus: How to use high frequency price data to understand better 
the time-varying risk properties of the investment 

• Two types of risk: the normal volatility risk and the jump risk 
• Topics: 

– Cleaning and aggregation (univariate and multivariate) of tick prices 
into log-returns 

– Discrete time model for intraday returns: 
• Spot volatility estimation 
• Price jump detection 

– Continuous time model for log-prices 
• Realized volatility estimation 
• Detection of a jump component in realized volatility 

– Forecasting volatility using realized volatility measures.  
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Roadmap (ii) 

• And how to do these analysis with the functions 
in the R package highfrequency 

– Latest version at: http://r-forge.r-project.org/R/?group_id=1409  

– Main authors are Jonathan Cornelissen (Datacamp), 
Scott Payseur (UBS) and myself. 

 

 

4 

Other contributors: 
• GSOC: 

• Giang Nguyen 
• Maarten Schermers 

• Chris Blakely, Brian 
Peterson, Eric Zivot 

• You? 
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WARNING: The functions in highfrequency were initially 
designed for the Trades and Quotes database but are generally 
applicable, as long as: 

– They are xts-objects; 

– Some functions require tdata/qdata: 
• tdata: Trade data having at least the column name “PRICE” 

• qdata: Quote data having at least the column names “BID” and “OFR” 
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CLEANING AND AGGREGATION 
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• High frequency price data analysis: Making 
sense of too big data 

7 



• The tick by tick ‘raw’ price series needs to 
processed in two ways: 
– Data cleaning to remove some obvious “errors” from 

the data:  
• Trades and quotes with position size of 0; 
• Trades and quotes with time stamp outside the opening 

hours of the exchange; 
• Trade prices that are below the best bid are above the best 

ask 
• Bid quotes that are higher than the ask quote 
• Fat finger errors: A human error caused by pressing the 

wrong key when using a computer to input data.  

– Aggregation to the frequency of interest.  
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Function in highfrequency Aim Requirement on input data 

exchangeHoursOnly Restrict data to exchange 
hours 

xts 

selectexchange Restrict data to specific 
exchange  

xts with column "EX" 

autoSelectExchangeTrades Restrict data to exchange with 
highest trade volume 

xts with column "EX“ and 
“SIZE” 

mergeTradesSameTimestamp  Delete entries with same time 
stamp and use median price  
 

rmTradeOutliers  Delete entries with prices 
above/below ask/bid +/- 
bid/ask  spread  

xts with column “PRICE” 
xts with columns “BID” and 
“OFR” 
 Transaction and quote 
data are matched internally 
with the function 
matchTradesQuotes 

rmOutliers Remove outliers in quote data 
based on rolling outlier 
detection in the spread 

xts with columns “BID” and 
“OFR” 

And several others: noZeroPrices, noZeroQuotes, mergeQuotesSameTimestamp, 
rmNegativeSpread   



Aggregation 

• Highfrequency price data analysis consists of 
zooming in on the intraday price data obtained 
typically as tick data (which occur at irregular times) 

aggregated at some frequency: 
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Daily aggregation 

Aggregation over higher 
frequency intervals 

Tick by tick price data 



Two types of aggregation from tick data:  

• Calendar time based sampling: Every 10 minutes, 
Every minute, Every second, Every milisecond  Prices 
are observed a regularly spaced time intervals 

• Transaction based sampling (also called business time 
sampling): Every 10 trades, every trade (tick data).   

 

The choice of the sampling frequency may be a function 
of, among other things, the liquidity of the stock : Illiquid 
stocks are infrequently traded implying many zero returns 
at very high frequencies. 
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Calendar time based sampling 

• Function aggregatets: From transaction time to a fixed 
calendar time based frequency, e.g. every 5 seconds: 
– Default: previous tick: take the last price observed in the 

interval: [start,end[ (i.e. excluding the value at the end 
time of the interval) 

– Alternative: take the mean value 
 
data("sample_tdata"); 

ts = sample_tdata$PRICE; 

# Previous tick aggregation to the 5-seconds 
sampling frequency: 

tsagg5secs = aggregatets(ts,on="seconds",k=5); 

head(tsagg5secs); 
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Note: Loss of observation, but 
more tractable , and less market 
microstructure noise issues 



Business time based sampling 

• From transaction time to a fixed business 
time based frequency, e.g. every 5 ticks: 

 
 

ts[seq(1,length(ts),5)] 
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Note: Loss of observation, but 
more tractable, and less market 
microstructure noise issues.  



• For multivariate analysis, such a univarate 
aggregation scheme is often not suited due to 
non-synchronicity in the trades of different 
assets: 
– If one stock has traded, but the other has not, it 

would seem as there is no relationship, while in 
fact there is one, but we have not observed it yet.  

– Epss effect: Because trades occur in discrete time, 
when sampling at ultrahighfrequency observation 
times, the correlation is biased towards zero.  
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Multivariate synchronization:  
Refresh times 

• From nonsynchronous transaction times based observations of multiple 
series to common observations: next observation is when there has been 
a new observation for all series 

17 



#suppose irregular timepoints:  

start = as.POSIXct("2010-01-01 09:30:00")  

ta = start + c(1,2,4,5,9,14);  

tb = start + c(1,3,6,7,8,9,10,11,15);  

tc = start + c(1,2,3,5,7,8,10,13);  

#yielding the following timeseries:  

a = as.xts(1:length(ta),order.by=ta);  

b = as.xts(1:length(tb),order.by=tb);  

c = as.xts(1:length(tc),order.by=tc);  

#Calculate the synchronized timeseries:  

refreshTime(list(a,b,c)) 
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Note:  
• The least liquid stock will determine the 

sampling grid: you risk to lose many 
observations.  

• Even if same liquidity, because of random 
arrivals, large data losses in high 
dimensions. Curse of dimensionality! 



DISCRETE TIME MODEL FOR THE 
LOG-RETURNS 

20 



• Let us consider first a discrete time location-scale 
model for the highfrequency returns; 

• Notation: 
– P(s) is the price at time s 
– p(s) = log(P(s)) is the natural logarithm of the price 
– We assume for the moment equispaced intraday 

returns and denote the i-th return on day t as rt,i 

– The length of one day is normalized to [0,1] 
– Assume M observations in a day, then the time 

between two observations is Δ=1/M. 
– The i-th return on day t is given by: 
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A discrete time conditional location- scale 
model for the highfrequency log-return 

• Conditional on the information available at 
the end of the previous intraday time interval 
It,i-1:  

 

– with  μt,i the conditional mean at the daily level 
(also called drift) 

– σ t,i the conditional volatility at the daily level (also 
called spot volatility) 

– zt,i standard white noise (i.e. iid with mean 0 and 
variance 1, typically assumed to be Gaussian). 
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Estimation? 

• At high frequencies, we can assume the drift to be 
0: 

 

• The function spotvol provides an estimate of σt,i : 

– Non-parametric: local kernel estimator; 

– Semi-parametric: volatility is assumed to be given by the 
product between: 
• A stochastic daily volatility level σt 

• A deterministic intraday period process, corresponding to the 
U-shape fi: 
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data(sample_real5minprices) 

plot(spotvol(sample_real5minprices)) 
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Time series of 5-
minute spot 
volatilities for 60 
days: 

Corresponding 
components: 
* Intraday periodic 
component that 
only de 



• Extensions in spotvol: 
– Allow for a stochastic component in the periodic 

pattern; 

– Robust estimators that account for price jumps in 
the estimation:  

 

 

– And use this to detect the price jumps by 
identifying a jump when: 

 

    is very large 
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# illustration for day 9 in the example data sample_real5minprices 

# plot the price series and the corresponding jump test statistics 

 d=9 ; par(mfrow=c(2,1),mar=c(3,2,2,1)) 

 plot(sample_real5minprices[d*79+(1:79)],main="prices") 

 plot( abs(diff(log(sample_real5minprices[d*79+(1:79)]))[(-

1)])/spotvol(sample_real5minprices)$spot[d*79+(1:79)],type="h" 

,main="jump test statistics") 
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• How large? 
– Take a high critical value to avoid false detections 

 

 

 

 

 

– But not too high to avoid that you lose power to 
detect the jumps 
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REALIZED VOLATILITY ESTIMATION 
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• In addition to the estimation of the local spot volatility, it is 
important to also estimate the variability over a longer time 
window, such as one day.  

• Noisy measure of daily variability: squared daily return 
• Potentially more efficient measures use intraday data: 

– daily price range  
– Realized variance: sum of squared intraday returns 
– … 
However, to understand what parameter they actually estimate 

it is important to have a model for the intraday price evolution: 
Continuous-time brownian semimartingale model with jumps. 

The observed prices are discrete time realizations of that 
continuous-time process. 
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From discrete to continuous time 
model 
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rt,M 

 

• Asymptotic analysis: what happens if 
M∞, that is, when Δ 0. 



From discrete to continuous time 

• Discrete time conditional location scale model 

 

 

• Continuous time brownian semi-martingale 
diffusion 
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parameter 

σ is the spot 
volatility 
parameter 



• A continuous time stochastic proces {wt} is a 
Brownian motion (Wiener process) is it satisfies that 
its increments are iid normal with variance equal to 
the time change.  

• More precisely, for any time s, we have that  

 

where z is a standard normal random variable. 

• Martingale property: best possible prediction of 
future value is most recently observed value 
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Simulation of Brownian motions 

set.seed(1234) 

# simulate brownian motion 

M = 10000 

delta = 1/M 

z1 = rnorm(M)*sqrt(delta) 

z2 = rnorm(M)*sqrt(delta) 

z3 = rnorm(M)*sqrt(delta) 

z4 = rnorm(M)*sqrt(delta) 

w1 = cumsum(z1); w2 = cumsum(z2); w3 = cumsum(z3); w4 = cumsum(z4) 

vt = seq(0,1,length.out=M) 

plot( vt, w1 , ylim = c( min(c(w1,w2,w3,w4)), max(c(w1,w2,w3,w4)) ) , 
col="blue" , type="l", xlab="time",ylab="realizations of Brownian 
motion") 

lines( vt , w2 , col="red") 

lines( vt , w3 , col="green") 

lines( vt , w4 , col="orange") 
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Including jumps 

• For simplicity, assume jumps have finite activity: this 
means that for each interval the number of jumps 
that can happen is finite 

• The cumulative number of jumps is given by a count 
process qs (eg Binomial)  

• The magnitude of the jump is given by the process κs 

• The brownian semimartingale with finite activity 
jumps is then:  
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• Different ex post measures of variability can 
be considered:  

 

– Quadratic variation: Total variation; 

– Integrated variance: Only the smooth variation; 

– Jump variance: Only the jump variation; 

– Jump tests: Is there a significant jump variability 
observed on a given day?  
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Realized variance 

• Realized variance is the sum of squared 
intraday returns 

 

• When Δ0, the realized variance converges 
to the quadratic variation, which under the 
BSMFAJ model equals the integrated variance 
+ sum of squared intraday jumps: 
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Realized bipower variation 

• Sometimes we only wish to estimate the integrated variance 

• Jumps have finite activity: the probability that two contiguous 
returns have a jump component is 0 almost surely.  

• Two continuous returns have almost the same spot variance 

• The impact of the product between a “continuous” return and 
a return with a jump component is neglible 

• Hence the realized bipower variation is consistent for the Ivar 

 

 

 
(the correction factor π/2 corresponds to the inverse of the square of the expected value of a standard normal 
random variable) 
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• Since: 

 

 

 

 

• We have that: 
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Other robust estimators exist 

• MedRV 

 

(c is a correction factor to ensure consistency) 

 

• ROWVar 
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• Because of estimation error, the jump robust 
estimator and the total variation estimator 
will always give a different number in finite 
samples; 

• How to decide whether that difference is large 
enough to say that there has been a price 
jump?  
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Jump test 

• H0: no jump on day t 

• HA: at least one jump on day t 

• Under H0 the RV and robust alternatives 
estimate the same quantity (IV): the 
difference is estimation error that is normally 
distributed around 0 and variance 
proportional to the integrated quarticity 
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Estimation of integrated quarticity 

• MedRQ 

 

(c is a correction factor to ensure consistency) 

 

 

• Then the jump test statistic is: 
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Example 

data(sample_tdata) 

BNSjumptest(sample_tdata$PRICE[1:79], QVestimator= "RV", 

IVestimator= "medRV", IQestimator = "medRQ", type= 

"linear", makeReturns = TRUE) 
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• Other jump tests implemented in 
highfrequency:  

– Ait-Shalia and Jacod: AJjumptest,  

– Jian and Oomen: JOjumptest 
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Extensions: Microstructure noise 

• In practice, we don’t observe the efficient price, 
but the price with some microstructure noise 
(rounding, bid-ask bounce) 
 
 

• Then there are three sources of variability to 
distinguish: IV, jump variance and the noise 
variance: 
– Two time scale estimator: function (R)TSCov in 

highfrequency 
– Preaveraging: function MRCov in highfrequency 
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Extensions: Multivariate analysis 

• Asset pricing models, portfolio selection, hedging, 
arbitrage strategies, value-at-Risk forecasts: they 
typically need a multivariate approach and require a 
covariance estimate 

• Same challenges as in the univariate case because of 
the three sources of variability, in addition to 
estimation troubles coming from non-synchronous 
trading 
– If ignored: leads to underestimation of dependence.  

• In highfrequency: 
– Multivariate refresh time sampling 
– Several covariance estimators: rCov, rHYCov, rTSCov, 

rThresholdCov, rOWCov, MRC,… 
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FORECASTING THE REALIZED 
VOLATILITY (OPEN TO CLOSE) 
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HAR model 

• Realized volatilities model the open to close variabilities 
• It’s of interest to forecast future open to close variability 
• This is done through a Heterogeneous AutoRegressive model 

in which the RV is predicted based on averages of k past RV 
– Lagged RV (k=1) 
– Average RV of the past week (k=5) 
– Average RV of the past month (k=22) 

 
 
 

• Note: parsiomonious, linear in parameters, so OLS 
estimation. 
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# Forecasting daily Realized volatility for DJI 2008 

# using the basic harModel: HARRV and give RVs as  

# input 

data(realized_library);  

#Get sample daily Realized Volatility data 

DJI_RV = 

realized_library$Dow.Jones.Industrials.Realized.Vari

ance; #Select DJI 

DJI_RV = DJI_RV[!is.na(DJI_RV)]; #Remove NA's 

DJI_RV = DJI_RV['2008']; 

x = harModel(data=DJI_RV , periods = c(1,5,22), 

RVest = c("rCov"), type="HARRV",h=1,transform=NULL); 

summary(x); 

plot(x); 
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harModel giving the RV as input 

51 



52 



• Several extensions of the HAR model: 
including jumps (type == "HARRVJ“), leverage 
effects (not implemented yet). 

 

• Limitation: open to close variability 

 

• For forecasting close to close variance using 
realized measures: see the heavyModel in 
highfrequency (non-linear: QML estimation).  
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Roadmap (i) 

• “There are old traders, there are bold traders, but there are no old 
bold traders” 

• Focus: How to use high frequency price data to understand better 
the time-varying risk properties of the investment 

• Two types of risk: the normal volatility risk and the jump risk 
• Topics: 

– Cleaning and aggregation (univariate and multivariate) of tick prices 
into log-returns 

– Discrete time model for intraday returns: 
• Spot volatility estimation 
• Price jump detection 

– Continuous time model for log-prices 
• Realized volatility estimation 
• Detection of a jump component in realized volatility 

– Forecasting volatility using realized volatility measures.  
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Roadmap (ii) 

• And how to do these analysis with the functions in 
the R package highfrequency 
– Latest version at: http://r-forge.r-project.org/R/?group_id=1409  

• Other functionality: Calculation of liquidity 
measures (effective spreads, depth imbalance, etc.)  

• Convert large multiday files from WRDS, TAQ, 
Tickdata into xts objects organized by day 

• Realized higher order moments: rSkew, rKurt 

• Your contribution? 
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