Equity Derivatives And Linked Default Intensity

```
rag·top
'ragtäp/
noun
noun: ragtop; plural noun: ragtops; noun: rag-top; plural noun: rag-tops
1 a car with a convertible roof.
```

devtools::install_github('brianboonstra/ragtop')

Motivation

- Existing open-source derivatives pricing libraries lack important features
 - They handle only basic SDEs and ignore term structures of parameters
 - Calibration is at best an afterthought
- A great test case is convertible bonds
 - Proper pricing requires must treat subtle features of the bond and underlying
 - To a Q quant, convertible bonds are the most interesting asset class

Goals

- Reasonable stochastic process suitable for addressing convertible bonds, provides fancy pricing abilities to equity options as a special case
- Efficient pricing of multiple instruments at once
- Calibration included
- Pricing consistent with implied volatility skew
- Hasn't somebody done this already? What about QuantLib?

- No equity-linked default intensity
- Does not handle discrete dividends that mix proportional and fixed
- Discrete pricing dates only: unsuitable for use close to option maturity
- Only available convertible bond model is 1980s era mixed discounting
- A lot of mental/coding overhead to handle simple cases

- No equity-linked default intensity
- Does not handle discrete dividends that mix proportional and fixed
- Discrete pricing dates only: unsuitable for use close to option maturity
- Only available convertible bond model is 1980s era mixed discounting
- A lot of mental/coding overhead to handle simple cases

Valeant Skew, 28 Day Options Somewhat Explainable By Default Risk

- No equity-linked default intensity
- Does not handle discrete dividends that mix proportional and fixed
- Discrete pricing dates only: unsuitable for use close to option maturity
- Only available convertible bond model is 1980s era mixed discounting
- A lot of mental/coding overhead to handle simple cases

- No equity-linked default intensity
- · Does not handle discrete dividends that mix proportional and fixed
- Discrete pricing dates only: unsuitable for use close to option maturity
- Only available convertible bond model is 1980s era mixed discounting
- A lot of mental/coding overhead to handle simple cases

Effect of Fixed Versus Proportional Discrete Dividends

Choices

- Use a 2D stochastic process
 - First dimension is Black-Scholes with term structures of deterministic coefficients
 - Second dimension is jump to bankruptcy
 - Link equity level to default jump intensity

$$\frac{dS_t}{S_t} = (r(t) + h(S_t, t) - q(t))dt + \sigma(t)dZ - dJ(h(S_t, t))$$

Convert to a PDE using usual Feynman-Kac

$$\frac{\partial V}{\partial t} - rV + h(\delta - V) + (r - q + h)S\frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = 0$$

- Convert to a PDE using usual Feynman-Kac
- Solve using implicit finite difference scheme with Neumann boundary conditions
 - Include reasonable default grid parameters
 - Increase stability by working in log(S) space
- Calibration
 - Stage for efficiency: ATM volatilities, then the rest
 - · Penalties computed on implied volatilities, to regularize

```
devtools::install_github('brianboonstra/ragtop')
```


Example

- You may think Tesla does not have convertibles
- In fact, they have millions
- March 1, 2019 Bond 88160RAB7
 - 0.25% Coupon
 - Each \$1000 bond convertible for 2.7788 shares
 - · "Green shoe" compound option

Analysis Process

Choose a simple 3-parameter functional form for default intensity

$$h(S) = h_0 \left(s + (1 - s) \left(\frac{S_0}{S} \right)^p \right)$$

- Calibrate model parameters to more liquid market instruments
 - Rates from treasury curve
 - Overall default intensity from lookup tables
 - Volatility and default intensity shape from equity options

Some Equity Option Data

callput	K	time	mid	bid	ask	spread
1	140	0.1265982	101.775	100.05	103.50	3.45
-1	300	0.1265982	61.200	60.00	62.40	2.40
1	360	0.3759132	1.745	1.57	1.92	0.35
1	185	0.6252283	64.750	63.80	65.70	1.90
-1	440	0.6252283	205.225	203.45	207.00	3.55

...and 675 more.

Fit Volatilities And Default Intensity

Fit Volatilities And Default Intensity

```
fit = ragtop::fit_to_option_market_df(
   S0 = TSLAMarket$S0,
   discount_factor_fcn = disct_fcn,
   options_df = ragtop::TSLAMarket$options,
   base_default_intensity=0.05
)
```

Price The Convertible Bond

```
cb_by_S = ragtop::form_present_value_grid(
   S0=S0, grid_center=S0,
   instruments=list(Convertible=cb),
   num_time_steps=250,
   default_intensity_fcn=fit$default_intensity_fcn,
   discount_factor_fcn = disct_fcn,
   variance_cumulation_fcn=fit$variance$cumulation_function,
   std devs width=5)
```

Plot Our Results

```
cbgrid = na.omit(as.data.frame(cb by S))
present value = spline(x=cbgrid[,"Underlying"],
                       y=cbgrid[,"Convertible"],
                       xout=S0)$y
cbplot = ( ggplot(cbgrid,
                  aes (x=Underlying, y=Convertible)) +
             geom line(size=1.2) +
             scale x continuous(limits=c(0,2.5*S0)) +
             scale y continuous(limits=c(0,2.5*cb$notional)) +
             geom point (aes (x=S0, y=present value), color="red") +
             labs(title="Convertible Bond Value")
```

TSLA Convertible Bond Value

What Can We Do With This?

- Price American and European options with fixed dividends
- Correct for skew with equity-linked default
- New (path-independent) payoffs are easy to add to the zoo
- Fit volatilities and default intensity functions simultaneously
- Price convertibles or other instruments consistently with economic intuition
- Local volatility model is a possible extension

