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Introduction



Luxor

Dual Moving Average Technical Trading Strategy [Jaekle and Tomasini(2009)]
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Introduction

Luxor dual moving average trading strategy
Luxor historically analyzed via inferential statistics

• Discrete time setting
• Historical data [Jaekle and Tomasini(2009)]
• Bootstrapped resampled [Efron(1979)]) [William Brock(1992)]

to determine

• Expected returns
• Draw down
• Select strategy parameters etc.

Our goal
Assume price dynamics are controlled by a stochastic differential equation (SDE) and
derive the Luxor closed form expected log returns in a continuous time setting

• Inspired by work in options pricing [Black and Scholes(1973), Merton(1973)]
• Gain analytical tractability by using the natural logarithm of the price
• Build frame work for analyzing trading strategies
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Assumptions

To gain analytical tractability we assume a frictionless market

1. Difference between the bid and ask price is infinitesimal
2. Transaction costs are zero
3. Transaction execution is instantaneous
4. Buy (sell) transactions fully execute at the current ask (bid) price
5. Market contains a single risky asset with price St
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Continuous Time Model

Price Dynamics

• Let
(

Ω,F , {Ft}t≥0 ,P
)

be a complete filtered probability space

• Dynamics of St under P is controlled by the SDE

dSt = µStdt + σStdWt µ, σ ∈ R constant

• Wt is one dimensional Brownian motion whose history up to time t contained in
the filtration {Ft}t≥0

• For each ω ∈ Ω there exits a function

Wt(ω) :R+ × Ω→ R+ (the samples)

• W0(ω) = 0, disjoint increments of Wt(ω) are independent, increments W∆t(ω)

are normally distributed with mean zero and variance ∆t, and Wt(ω) is
continuous on [0, t].
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Continuous Time Model

SDE Solution
Let

f(s) = ln s, f ′(s) =
1
s
, f ′′(s) = −

1
s2

(dt)2 = 0, (dt)(dWt) = 0, (dWt)
2 = dt ([W,W]t = t)

Apply Itô’s formula [Shreve(2004)] to d ln St where dSt = µStdt + σStdWt

df(St) = f ′(St) dSt +
1
2
f ′′(St) (dSt)2

d ln St =
1
St
dSt +

1
2

(
−

1
S2
t

)
(dSt)2

=
1
St

(µStdt + σStdWt) +
1
2

(
−

1
S2
t

)(
σ2S2

tdt
)

=

(
µ−

σ2

2

)
dt + σdWt (1)
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Continuous Time Model

SDE Solution
Integrate equation 1 from 0 to t and apply exponential function to both sides

ˆ t

0
d ln St =

ˆ t

0

(
µ−

σ2

2

)
du +

ˆ t

0
σdWu

ln St = ln S0 +

(
µ−

σ2

2

)
t + σWt

St = S0 e(µ−σ2
2 ) t+σ Wt (2)

The solution St is known as geometric Brownian motion.
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Continuous Time Model

Model
Dividing both sides of the SDE by St, it can be rewritten as

dSt
St

= µdt + σdWt (3)

In essence, the instantaneous return is a constant term plus a volatility term

• If we knew that either µ >> σ2
2 or µ << σ2

2 and the SDE model is accurate,
investing would be easy; thus, we assume |µ− σ2

2 | is not large and µ is not easy
to determine for a given asset over a short time frame
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Continuous Time Model

Exponentially Filtered Stochastic Process
An exponentially filtered stochastic process Υt[Xt; τ ] where τ > 0 is a convolution of
the exponential kernel function 1

τ
e−

1
τ
t with the stochastic process Xt.

Υt[Xt; τ ] =

ˆ t

0

1
τ
e−

1
τ

(t−u)Xudu (4)

Note:

• Υt[Xt; τ ] is a path dependent time series operator
• Υt[Xt; τ ] is {Ft}t≥0 measurable - can calculate Υt[Xt; τ ] given filtration at time t
• Lower limit is usually defined as −∞; however, we work with processes on [0, T]

and assume a steady state is reached in finite time at t > tss
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Strategy Definition

Strategy Components [Peterson(2015)]

• Filters - select instruments
• Indicators - quantitative values derived from market data
• Signals - respond to interactions between filters, market data, and indicators
• Rules - make path dependent actionable decisions when signals fire

Formulate Luxor as a set of equations following this model
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Strategy Definition

Difference Indicator
The difference indicator Ψt : R→ R is the difference of two exponential filters
applied to a stochastic process Xt where 0 < τ1 < τ2.

Ψt[Xt; τ1, τ2] = Υt[Xt; τ1]−Υt[Xt; τ2]

• Use natural logarithm of the asset price Xt = ln St to gain analytical tractability
• Ψt[Xt; τ1, τ2] known as moving average convergence divergence (MACD) oscillator

in technical analysis.
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Strategy Definition

Position Indicator
The position indicator %t : R→ {−1,0, 1} is the composition of the signum function
with the difference indicator and indicates potential long or short position
opportunities.

%t = (sgn ◦Ψ)t = sgn (Ψt) =


1 Ψt ≥ 0 long
0 Ψt = 0 previous
−1 Ψt < 0 short

(5)
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Strategy Definition

Position Entry/Exit Signals
Position indicator transitions

• (−1→ +1) or (−1→ 0→ +1) exit any short position and enter a long position
• (1→ −1) or (1→ 0→ −1) exit any long position and enter short position

Initial entry/final exit occur on first position indicator entry/exit signal after steady
state is reached at t > tss
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Strategy Definition

Rules
Always act on position indicator signals (identity function)

• Gain analytical tractability
• Efficient implementation uses rules to define

• When and how to enter or exit the market
• Determine position size
• Manage risk
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Evaluation Criteria

Luxor Log Return

The log return rt of the Luxor strategy on [0, t] is given by the integral of the position
indicator % with respect to the change of the logarithm of the asset price.

rt =

ˆ t

0
%ud ln Su (6)

Assumes equal size positions in the asset
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Example
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Strategy Analysis

Exponentially Filtered Logarithm of Asset Price
Construct the exponentially filtered logarithm of the asset price Υt[ln St, τ ] by
substituting the logarithm of the SDE solution St from equation 2 for Xt in the filter
definition in equation 4.

Υt[ln St, τ ] =

ˆ t

0

1
τ
e−

1
τ

(t−u)

[
ln S0 +

(
µ−

σ2

2

)
u + σWu

]
du

=
e−

1
τ
t

τ

[
ln S0

ˆ t

0
e

1
τ
udu +

(
µ−

σ2

2

) ˆ t

0
u e

1
τ
udu + σ

ˆ t

0
e

1
τ
uWudu

]
(7)

First two integrals in Υt[ln St, τ ] are deterministic Riemann integrals wrt time and
have explicit solutions. The last integral is a stochastic Riemann integral of Brownian
motion wrt time.
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Strategy Analysis

Exponentially Filtered Logarithm of Asset Price
First integral in Υt[ln St, τ ], equation is solved using the fundamental theorem of
calculus.

ˆ t

0
e

1
τ
udu = τ

[
e

1
τ
u
]t

0

= τ
(
e

1
τ
t − 1

)
(8)

The second integral requires in addition to the fundamental theorem of calculus
integration by parts where

´
xdy = xy −

´
ydx. Let x = u which implies dx = du, and

let

dy = e
1
τ
udu

y =

ˆ
e

1
τ
udu

= τe
1
τ
u (9)
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Strategy Analysis

Exponentially Filtered Logarithm of Asset Price
Using the results from equation 9 to complete the integration by parts solves the
second integral in Υt[ln St, τ ] from equation 7.

ˆ t

0
u e

1
τ
udu = τ

[
ue

1
τ
u
]t

0
−
ˆ t

0
τe

1
τ
udu

= τ te
1
τ
t − τ 2

[
e

1
τ
u
]t

0

= τ
[
te

1
τ
t − τ

(
e

1
τ
t − 1

)]
(10)
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Strategy Analysis

Exponentially Filtered Logarithm of Asset Price
Inserting the results of equations 8 and 10 into Υt[ln St, τ ], equation 7, results in an
equation with two deterministic terms and a stochastic term which is a Riemann
integral of scaled Brownian motion wrt time.

Υt[ln St, τ ] =
e−

1
τ
t

τ

[
τ ln S0

(
e

1
τ
t − 1

)
+ τ

(
µ−

σ2

2

)[
te

1
τ
t − τ

(
e

1
τ
t − 1

)]
+ σ

ˆ t

0
e

1
τ
uWudu

]
= ln S0

(
1− e−

1
τ
t
)

+

(
µ−

σ2

2

)[
t− τ

(
1− e−

1
τ
t
)]

+
σe−

1
τ
t

τ

ˆ t

0
e

1
τ
uWudu (11)
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Strategy Analysis

Difference Indicator
Let 0 < τ1 < τ2, the difference indicator Ψt[ln St, τ1, τ2] is formed from the difference
of two versions of Υ with different values of τ applied to ln St.

Ψt[ln St, τ1, τ2] = Υt[ln St, τ1]−Υt[ln St, τ2]

= ln S0
(

1− e−
1
τ1
t
)

+

(
µ−

σ2

2

)[
t− τ1

(
1− e−

1
τ1
t
)]

+
σe−

1
τ1
t

τ1

ˆ t

0
e

1
τ1
uWudu

− ln S0
(

1− e−
1
τ2
t
)
−
(
µ−

σ2

2

)[
t− τ2

(
1− e−

1
τ2
t
)]
−
σe−

1
τ2
t

τ2

ˆ t

0
e

1
τ2
uWudu

= ln S0
(
e−

1
τ2
t − e−

1
τ1
t
)

+

(
µ−

σ2

2

)[
τ2
(

1− e−
1
τ2
t
)
− τ1

(
1− e−

1
τ1
t
)]

+ σ

ˆ t

0

( 1
τ1
e−

1
τ1

(t−u) −
1
τ2
e−

1
τ2

(t−u)
)
Wu du (12)

From this point forward Ψt = Ψt[ln St, τ1, τ2].
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Strategy Analysis: Difference Indicator

Convert to Itô Integral
When ft is deterministic, the Itô product rule [Oksendal(2000)], reduces to

d(ftWt) = (dft)Wt + ftdWt + (dft)(dWt)

= f ′t dtWt + ftdWt

Rearranging terms and integrating both sides from 0 to t gives an integration by
parts formula that converts a Riemann integral of Brownian motion wrt time to a
scaled Brownian motion term and an Itô integral

f ′tWtdt = d(ftWt)− ftdWtˆ t

0
f ′uWudu =

ˆ t

0
d(fuWu)−

ˆ t

0
fudWu

ˆ t

0
f ′uWudu = [fuWu]t0 −

ˆ t

0
fudWu (13)
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Strategy Analysis: Difference Indicator

Convert to Itô Integral
Let

d fu
d u

= σ

( 1
τ1
e−

1
τ1

(t−u) −
1
τ2
e−

1
τ2

(t−u)
)

ˆ
dfu = σ

ˆ ( 1
τ1
e−

1
τ1

(t−u) −
1
τ2
e−

1
τ2

(t−u)
)
du

ft = σ
(
e−

1
τ1

(t−u) − e−
1
τ2

(t−u)
)

(14)

Rearrange terms as in equation 13

σ

ˆ t

0

( 1
τ1
e−

1
τ1

(t−u) −
1
τ2
e−

1
τ2

(t−u)
)
Wu du

=

���
���

��
���

��:0

σ
[(
e−

1
τ1

(t−u) − e−
1
τ2

(t−u)
)
Wu
]t

0
− σ
ˆ t

0

(
e−

1
τ1

(t−u) − e−
1
τ2

(t−u)
)
dWu

= σ

ˆ t

0

(
e−

1
τ2

(t−u) − e−
1
τ1

(t−u)
)
dWu (15)
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Strategy Analysis: Difference Indicator

Itô Process
Substituting the results of the integration by parts into equation 12 converts Ψt to an
Itô process

Ψt = ln S0
(
e−

1
τ2
t − e−

1
τ1
t
)

+

(
µ−

σ2

2

)[
τ2
(

1− e−
1
τ2
t
)
− τ1

(
1− e−

1
τ1
t
)]

+ σ

ˆ t

0

(
e−

1
τ2

(t−u) − e−
1
τ1

(t−u)
)
dWu (16)
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Strategy Analysis: Difference Indicator

Transient Behavior
Define the first two terms of Ψt equation 16 as

bt,1 = ln S0
[
e−

1
τ2
t − e−

1
τ1
t
]

(17)

bt,2 =

(
µ−

σ2

2

)[
τ2
(

1− e−
1
τ2
t
)
− τ1

(
1− e−

1
τ1
t
)]

(18)
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Strategy Analysis: Difference Indicator

Plot of bt,1 and bt,2 with µ = 0, σ = 0.1, τ1 = 5, and τ2 = 10
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Strategy Analysis: Difference Indicator

Steady State Assumptions
We assume that for S0 > 1 and 0 < τ1 < τ2 there exists a tss such that for all t > tss
the transient behavior of the deterministic terms bt,1 and bt,2 is insignificant to the
analysis and can be ignored.

lim
t→∞

[bt,1 + bt,2]

= lim
t→∞

[
ln S0

(
e−

1
τ2
t − e−

1
τ1
t
)

+

(
µ−

σ2

2

)[
τ2
(

1− e−
1
τ2
t
)
− τ1

(
1− e−

1
τ1
t
)]]

=

(
µ−

σ2

2

)
(τ2 − τ1) (19)

We assume that ∣∣∣∣ lim
t→∞

[bt,1 + bt,2]− [bt,1 + bt,2]t=tss

∣∣∣∣ < δ (20)

for some sufficiently small δ.
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Strategy Analysis: Difference Indicator

Steady State Difference Indicator

Ψt =

(
µ−

σ2

2

)
(τ2 − τ1) + σ

ˆ t

0

(
e−

1
τ2

(t−u) − e−
1
τ1

(t−u)
)
dWu (21)
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Strategy Analysis: Steady State

Expected Value and Variance of Ψt

Let Mt represent the Itô integral contained in the definition of Ψt in equation 21.

Mt = σ

ˆ t

0

(
e−

1
τ2

(t−u) − e−
1
τ1

(t−u)
)
dWu

=

ˆ t

0
Γ(u;t) dWu where Γ(u;t) = σ

(
e−

1
τ2

(t−u) − e−
1
τ1

(t−u)
)

(22)

Since Γ2
(u;t) is square integrable, E

[´ t
0 Γ2

(u;t) du
]
<∞, and for all u ≤ t, Γ(u;t) is Ft

adapted, the conditions of Theorem 4.3.1 [Shreve(2004)] are met and Mt is a
martingale. This implies that given 0 < s < t

E [Mt|Fs] = Ms (23)

Γ(0;0)=0 and W0 = 0 implies that M0 = 0 which combined with the martingale
property expressed in equation 23 implies for all t > 0 E [Mt] = 0.
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Expected Value and Variance of Ψt

Theorem 4.3.1 [Shreve(2004)] also implies

E [Ψt] = E
[(
µ−

σ2

2

)
(τ2 − τ1) + σ

ˆ t

0

(
e−

1
τ2

(t−u) − e−
1
τ1

(t−u)
)
dWu

]
=

(
µ−

σ2

2

)
(τ2 − τ1) (24)
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Strategy Analysis: Steady State

Expected Value and Variance of Ψt

Only the Itô integral contributes to the variance of Ψt

V [ Ψt] = V [Mt]

= E
[
(Mt − E [Mt])

2] = E
[
M2
t
]

= E
[ˆ t

0
Γ2

(u;t) du
]

= E
[
σ2
ˆ t

0

(
e−

1
τ2

(t−u) − e−
1
τ1

(t−u)
)2

du
]

= σ2
ˆ t

0

(
e−

1
τ2

(t−u) − e−
1
τ1

(t−u)
)2

du

= σ2
ˆ t

0

(
e−

2
τ2

(t−u) − 2e−
(

1
τ1

+ 1
τ2

)
(t−u)

+ e−
2
τ1

(t−u)

)
du

= σ2

[ τ2
2
e−

2
τ2

(t−u)
]t

0
−
[

2
1
τ1

+ 1
τ2

e
−
(

1
τ1

+ 1
τ2

)
(t−u)

]t
0

+
[ τ1

2
e−

2
τ1

(t−u)
]t

0


= σ2

(
τ2
2

(
1− e−

2
τ2
t
)
−

2
1
τ1

+ 1
τ2

(
1− e−

(
1
τ1

+ 1
τ2

)
t
)

+
τ1
2

(
1− e−

2
τ1
t
))

(25)
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Strategy Analysis: Steady State

Variance of Ψt for parameter values σ = 0.1, τ1 = 5 and τ2 = 10
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Strategy Analysis: Steady State

When t = 0 in equation 25, the variance of Mt is equal to zero which is expected
since W0 = 0. Consider the limit of equation 25 as t goes to infinity.

lim
t→∞

V [Mt]

= lim
t→∞

[
σ2
(
τ2
2

(
1− e−

2
τ2
t
)
−

2
1
τ1

+ 1
τ2

(
1− e−

(
1
τ1

+ 1
τ2

)
t
)

+
τ1
2

(
1− e−

2
τ1
t
))]

= σ2
(
τ2
2
−

2
1
τ1

+ 1
τ2

+
τ1
2

)

=
σ2

2

(
(τ2 − τ1)2

τ1 + τ2

)
(26)

Since 0 < τ1 < τ2 the steady state variance of Ψt is always greater than zero which is
expected as it should only be zero if the two exponentially filtered stochastic process
have the same value of τ . We assume that∣∣∣∣ lim

t→∞
V [Mt]− V [Mt]|t=tss

∣∣∣∣ < δ (27)

for some sufficiently small δ.
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Strategy Analysis: Steady State

Distribution of Ψt

Since Mt is an Itô integral with respect to Brownian motion with a deterministic
integrand Γ(u;t), by Theorem 4.4.9 [Shreve(2004)] for each t > 0, Mt is normally
distributed with expected value zero and variance

´ t
0 Γ2

(u;t) du. Thus, Ψt from
equation 21 is normally distributed with the expected value u and variance s given by
equations 24 and 26.

Ψt ∼ N
(
u, s2)

∼ N
((

µ−
σ2

2

)
(τ2 − τ1) ,

σ2

2

(
(τ2 − τ1)2

τ1 + τ2

))
(28)

Note that for t > tss mean and variance are constant and not dependent on t, but on
the constants µ, σ, τ1, and τ2.

©Doug Service 2016 cbna R/Finance 2016 35



Strategy Analysis: Steady State

V [Ψt] = σ2
2

(
(τ2−τ1)2

τ1+τ2

)
Plot of  V(Ψt)  vs  τ1  and  τ2

0
5

10
15

15
20

25
30

35
40

45
0.00

0.01

0.02

0.03

0.04

0.05

τ1

τ2

V(ψt)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

©Doug Service 2016 cbna R/Finance 2016 36



Strategy Analysis: Steady State

Density of Ψt

Given that Ψt is normal with mean u and variance s2, Ψt ∼ N (u, s), the cumulative
distribution function (CDF) FΨ and probability density function (PDF) fΨ for Ψt are

FΨ = Φ

(
ψ − u
s

)
(29)

fΨ =
d FΨ

dψ
=

1
s
φ

(
ψ − u
s

)
(30)

where Φ is the standard normal CDF and φ is the standard normal PDF. Substitution
of u and s from equation 28 into equation 30 gives the full density function for Ψt.
Once the steady state regime is reached the density function has no dependence on
t.

fΨ =
1

σ (τ2 − τ1)
√

π
(τ1+τ2)

exp

−
(
ψ −

(
µ− σ2

2

)
(τ2 − τ1)

)2

σ2(τ2−τ1)2

(τ1+τ2)

 (31)
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Strategy Analysis: Steady State

Expected Value of %t
The position indicator %t from equation 5 is a function of the random variable Ψt
whose distribution we have from equation 28; thus, we can calculate the expected
value of the position indicator using Theorem 3.2.2 part (ix) [Itó(1984)].

E [%t] =

ˆ ∞
−∞

sgn (ψ) fΨ(ψ) dψ

=

ˆ ∞
−∞

sgn (ψ)
1
s
φ

(
ψ − u
s

)
dψ

=

ˆ 0

−∞
(−1)

1
s
φ

(
ψ − u
s

)
dψ +

ˆ ∞
0

(1)
1
s
φ

(
ψ − u
s

)
dψ

= lim
a→∞

[
Φ

(
ψ − u
s

)]a
0
− lim

b→−∞

[
Φ

(
ψ − u
s

)]0

b

=

[
1− Φ

(0− u
s

)]
−
[

Φ

(0− u
s

)
− 0
]
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Strategy Analysis: Steady State

Expected Value of %t Continued

E [%t] = 1− 2Φ

(
−
u
s

)

= 1− 2Φ

−
(
µ− σ2

2

)
(τ2 − τ1)

σ2
2

(
(τ2−τ1)2

τ1+τ2

)


= 1− 2Φ

[
−

2
σ2

(
µ−

σ2

2

)
τ1 + τ2
τ2 − τ1

]
(32)
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Strategy Analysis: Steady State

Log Return Expected Value
We have now assembled the results needed to calculate the Luxor steady state
expected log return rt as given in definition 16.

E [rt] = E
[ˆ t

0
%ud (ln Su)

]
= E

[ˆ t

0
%u

[(
µ−

σ2

2

)
du + σdWu

]]
= E

[(
µ−

σ2

2

) ˆ t

0
%u du + σ

ˆ t

0
%u dWu

]
=

(
µ−

σ2

2

)
E
[ˆ t

0
%u du

]
+ σ E

[ˆ t

0
%u dWu

]
(33)
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Strategy Analysis: Log Return

Log Return
The position indicator %t by definition is a random sequence of the elements in the
set {−1,0, 1} which implies

ˆ t

0
%2
u du ≤ t <∞ (34)

thus %2
t is square integrable on [0, t]. In addition, %t is Ft adapted; therefore, the Itô

integral inside the second expected value in equation 33 mets the conditions of
Theorem 4.3.1 [Shreve(2004)] and the integral is a martingale with an initial and
expected value of zero.

Define the function g such that

ξ = g(ρ) =

ˆ t

0
ρ du (35)

and define the random variable Ξt.

Ξt = g(%t) =

ˆ t

0
%u du (36)
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Strategy Analysis: Log Return

Log Return
Since the last term in equation 33 is zero, the expected value of the log return is
given by the first term.

E [rt] =

(
µ−

σ2

2

)
E
[ˆ t

0
%u du

]
=

(
µ−

σ2

2

)
E [Ξt]

=

(
µ−

σ2

2

) ˆ ∞
−∞

ξ fΞt (ξ) dξ

Substitute ξ = g(ρ) and fΞt (ξ) dξ = f%t (ρ) dρ

via Theorem 3.2.2 part (ix) in [Itó(1984)]

=

(
µ−

σ2

2

) ˆ ∞
−∞

g(ρ) f%t (ρ) dρ

=

(
µ−

σ2

2

) ˆ ∞
−∞

(ˆ t

0
ρ du

)
f%t (ρ) dρ (37)

(38)
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Strategy Analysis: Log Return

Log Return
Change the order of integration via Fubini’s theorem

=

(
µ−

σ2

2

) ˆ t

0

(ˆ ∞
−∞

ρ f%t (ρ) dρ
)
du

=

(
µ−

σ2

2

) ˆ t

0
E [%u] du (39)

Inserting the expected value of % from equation 32 into equation 39 and solving the
integral gives the expected log return.

E [rt] =

(
µ−

σ2

2

) ˆ t

0

[
1− 2Φ

(
−

2
σ2

(
µ−

σ2

2

)
τ1 + τ2
τ2 − τ1

)]
du

=

(
µ−

σ2

2

)(
1− 2Φ

[
−

2
σ2

(
µ−

σ2

2

)
τ1 + τ2
τ2 − τ1

])
t (40)
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Strategy Analysis: Log Return

Proposition:
Given the assumptions and model in sections 5 and 6, the expected steady state log
return of the Luxor strategy is greater than or equal to zero.

E [rt] ≥ 0 (41)

Proof:
We proceed by determining the sign of each term in equation 40. t and σ2 are
positive by definition, and τ1+τ2

τ2−τ1
> 0 since 0 < τ1 < τ2. Let

C = −
2
σ2

(
µ−

σ2

2

)
τ1 + τ2
τ2 − τ1

(42)

Thus the order relation between µ and σ2
2 controls the sign of C.
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Strategy Analysis: Log Return

Proof (Continued):

Table 1 gives the value of µ relative to σ2
2 in the left column, the sign of each term

that can take on a negative value in the center columns and the resulting expected
log return E [rt] in the right hand column.

µ C Φ 1− 2Φ
(
µ− σ2

2

)
E [rt]

> σ2
2 - < 1

2 + + +

= σ2
2 0 = 1

2 0 0 0

< σ2
2 + > 1

2 - - +

Table 1: Expected Log Return Relative to µ and σ

Comparing the far left hand column with the far right hand column in table 1, we see
that for every µ ∈ R, σ ∈ R≥0, and 0 < τ1 < τ2, the expected log return rt is greater
than or equal to zero.
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Strategy Analysis: Log Return

d E[rt]
d t =

(
µ− σ2

2

)(
1− 2Φ

[
− 2
σ2

(
µ− σ2

2

)
τ1+τ2
τ2−τ1

])
σ = 0.1, τ1 = 3, τ2 = 20, t = 1

−0.10 −0.05 0.00 0.05 0.10 0.15

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

mu

lo
g 

re
tu

rn

σ2

2 buy and hold
luxor

©Doug Service 2016 cbna R/Finance 2016 46



Strategy Analysis: Log Return

d E[rt]
d t =

(
µ− σ2

2

)(
1− 2Φ

[
− 2
σ2

(
µ− σ2

2

)
τ1+τ2
τ2−τ1

])
σ = 0.3, τ1 = 3, τ2 = 20, t = 1
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Summary



Summary

Results
Given the assumptions and model in sections 5 and 6, we

• Derived a closed form solution for the expected log returns of Luxor
• Demonstrated Luxor has a non negative expected value
• When µ > σ2

2 high volatility causes under performance compared to buy and
hold

Issues
Issues we are currently addressing

• Simple SDE model does not capture features of stock prices that may be
advantageous to strategies like Luxor

• More accurate price SDE models
• More realistic transaction and slippage models
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