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Background How Practical Examples Discussion Some selective references

Talk overview

� Introduction

� Implemented combination schemes

� Some practical examples

� Discussion and takeaways

� Credits and references
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Some targets are easy to forecast

Solar eclipse of March 20, 2015. Source: Wikipedia

Next eclipse: August 12, 2026
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Some.. evidence is mixed
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Introduction

� What is it?

f combined =
∑P

i=1 fi
P

(1)

� Why is it?
Because it works

� And why is that?
More research is needed

� What is the intuition?
Biases
Model risk
Structural breaks
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Different models perform differently
under different conditions, and/or in different points in time:
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Electricity price forecasting, accuracy of different models. Source: Author’s calculation
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The thing is, going forward, we don’t know which
forecasting model will outperform

� So, as we don’t bet on the one horse in investments, we don’t bet
on the one horse here neither

That is the idea, but how to combine?
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Regression based (OLS)

Train the individual forecasts using:

yt = α +
P

∑
i=1

βi fi,t + εt , (2)

The combined forecast is then given by

f c = α̂ +
P

∑
i=1

β̂i fi , (3)

+’s:
� OLS (optimality)
� Flexibility, unconstrained

-’s:
� Flexibility, unconstrained
� Interpretation
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Regression based (LAD)
Train the individual forecasts using:

yt = α +
P

∑
i=1

βi fi,t + εt , (4)

But minimise the absolute loss function

∑
t
|εt |

instead of the squared loss function

∑
t

εt
2

� If the cost of missing the target is not very high, this combination
scheme may be preferred
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Regression based (CLS)
Train the individual forecasts using:

yt = α +
P

∑
i=1

βi fi,t + εt . (5)

Minimise the squared loss function:

∑
i

εt
2,

but under additional constraints:

βi ≥ 0, ∀i , or

∑P
i=1 βi = 1, or both

� Lacks optimality properties
� Works very well, especially when correlation between individual forecasts is high
� Better interpretability
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Accuracy-based (Inverse MSE)
Use some accuracy measure, for example mean squared error (MSE):

MSEi =
1
T

T

∑
t=1

(fi,t − yt )
2,

and combine the forecasts based on how well each individual is doing:

f c =

(
MSEi

∑P
i=1 MSEi

)−1

∑P
i=1

(
MSEi

∑P
i=1 MSEi

)−1 fi =
1

MSEi

∑P
i=1

1
MSEi

fi . (6)

� When individual forecasts are highly correlated this is not much
different than the simple average

� You can tailor the accuracy measure

� Since 2004, aggregated forecast through exponential re-
weighting method (AFTER)
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Best individual (BI)

Basically (ex-post) model selection

f c = wi fi , where
wi = 1 if MSEi < MSE−i ∀i ∈ {1, . . . ,P}
wi = 0 otherwise

(7)

� Very restrictive

� Easy to explain
� Don’t dismiss it beforehand
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PPP estimation
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GDP measurements
“The current system emphasizes data on spending, but the bureau also collects data on income.
In theory the two should match perfectly - a penny spent is a penny earned by someone else. But
estimates of the two measures can diverge widely” [Aruoba et al., 2015]

Source: Fed of Philadelphia
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Discussion

Paper here

Popular (across estimation window; bootstrapping; rolling vs
expanding and more). Research is still going strong

You, as well, are using it already:

Dt = (1− λ)
∞

∑
t=1

λt−1(εt−1ε′t−1) = (1− λ)(εt−1ε′t−1) + λDt−1, (8)

Some research ideas I did not get around to:
� Different regimes
� Dynamic model averaging

22
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Why not use it?

� Interpretation is often lost

� Does not always add value (garbage in =⇒ garbage out)

� Especially when you have a one strong dominant model to begin
with
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Why use it?

� Good “hedge” against wrong modelling choices

� No consensus on a ’best’ approach.
� Simple average is very robust
� Combining models eliminate the need to choose, which can be a

very good thing
� Useful in changing environment where structural breaks are likely
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[Fawcett et al., 2013]: Generalised density forecast combinations (the word

“Generalised” here can be replaced by “time-varying”)
[Hyndman et al., 2011]: Reconciling disaggregated forecasts with aggregated forecasts
[Casarin et al., 2015]: Predictive density combination
[Götz et al., 2016]: Forecasts based on different vintages of macro data
[Taieb and Hyndman, 2012]: Combining recursive and direct forecasts
[Jore et al., 2010]: Combining forecast densities from VARs
[Opschoor et al., 2014]: For Value-at-Risk estimates
[Liu, 2015]: Taking on the theory of the least squares averaging estimator
[Yang, 2004]: Exponential re- weighting method (AFTER)

DISCLOSURE
The content present is solely the responsibility of the presenter, and should not be interpreted as related to the views of
APG or APG-AM.
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