The Implicit Value of Tracking the Market

Presented by Majeed Simaan¹ R/Finance 2016

May 20, 2016

¹Joint work with Dr. Brian Clark and Dr. Chanaka Edirisinghe at RPI

The Implicit Value of Tracking the Market

Motivation

- Under full information, tracking error portfolios (TEPs) are Mean-Variance (MV) suboptimal
- Nonetheless, estimation error is severe in portfolio analysis
- Richard Roll (1992) alludes to one possible benefit of TEP: reduction in estimation error

Motivation

- Under full information, tracking error portfolios (TEPs) are Mean-Variance (MV) suboptimal
- Nonetheless, estimation error is severe in portfolio analysis
- **Richard Roll (1992)** alludes to one possible benefit of TEP: reduction in estimation error

Findings

- Roll was right: tracking the index does reduce estimation error
- The benefits of tracking the index outweigh the cost of estimating additional parameters

- Two investors A and B
- Both investors choose the same $d \in \mathcal{D}$ set of assets
- Both investors have the same level of risk tolerance
- Investor A solves for an MV optimal portfolio
- Investor B tracks the benchmark while maximizing excess return

- Two investors A and B
- Both investors choose the same $d \in \mathcal{D}$ set of assets
- Both investors have the same level of risk tolerance
- Investor A solves for an MV optimal portfolio
- Investor B tracks the benchmark while maximizing excess return
- It follows that

$$x^B = x^A + \alpha_2 \tag{1}$$

• α_2 is an arbitrage portfolio tilted toward the market direction, such that

$$\alpha_2 = \sigma_b^2 \cdot \mathbf{B}\beta \tag{2}$$

• where **B** is a non-linear function of Σ and independent of μ

MV Efficient Frontier

From MV perspective, x^B is sub-optimal to x^A

Estimation Error

- In practice, the model's parameters are unknown and decisions are based on historical data
- Let \hat{x} denote the estimate of x, then we have

$$\hat{x}^B = \hat{x}^A + \hat{\alpha}_2 \tag{3}$$

Estimation Error

- In practice, the model's parameters are unknown and decisions are based on historical data
- Let \hat{x} denote the estimate of x, then we have

$$\hat{x}^B = \hat{x}^A + \hat{\alpha}_2 \tag{3}$$

Main Findings

- The market component, $\hat{\alpha}_2$, is unbiased estimate of α_2
- The bias in \hat{x}^B is mainly due to the MV portfolio, \hat{x}^A
- The difference in estimation error between portfolio x̂^B and x̂^A is determined by a scalar λ, such that

$$\Delta = MSE(\hat{x}^{B}) - MSE(\hat{x}^{A}) = \frac{\lambda}{T - d - 1} \mathbf{B}$$
(4)

where, $MSE(x) = Var(x) + bias(x)^2$

Experiment

Looking at all stocks listed on S&P 500 starting from Jan 2000, we run the following test:

set r = 1

- Randomly draw a d subset of assets
- **③** Pick the first T days and estimate the model inputs
- Compute all relevant metrics along with the MSE difference, Δ, from (4)
- **(5)** Average the diagonal elements of Δ , yielding $\overline{\Delta}^{(r)}$
- $o r \rightarrow r+1 \text{ and repeat till } r > 1000$

Eventually, the experiment returns the following statistic:

$$Z_{\bar{\Delta}} = \frac{\bar{\Delta}}{\sigma(\bar{\Delta})} = \frac{\sum_{r=1}^{1000} \bar{\Delta}^{(r)} / 1000}{\sqrt{\sum_{r=1}^{1000} \left[\bar{\Delta}^{(r)} - \bar{\Delta}\right]^2 / 1000}}$$
(5)

Table: Estimation error difference between B and A

Т	Ā	$Z_{\bar{\Delta}}$	$ar{eta}$
d = 10			
500	-0.40	-0.79	0.77
1000	-0.54	-2.19	0.88
2000	-0.32	-2.79	0.89
<i>d</i> = 20			
500	-0.55	-1.65	0.94
1000	-0.58	-3.34	1.01
2000	-0.34	-4.26	1.00
<i>d</i> = 40			
500	-0.68	-2.81	1.25
1000	-0.59	-4.49	1.25
2000	-0.34	-5.67	1.20

<ロ> (日) (日) (日) (日) (日)