The Implicit Value of Tracking the Market

Presented by Majeed Simaan
R/Finance 2016

May 20, 2016

Joint work with Dr. Brian Clark and Dr. Chanaka Edirisinghe at RPI
Motivation

- Under full information, tracking error portfolios (TEPs) are Mean-Variance (MV) suboptimal
- Nonetheless, estimation error is severe in portfolio analysis
- Richard Roll (1992) alludes to one possible benefit of TEP: reduction in estimation error

Roll was right: tracking the index does reduce estimation error
The benefits of tracking the index outweigh the cost of estimating additional parameters
Motivation

- Under full information, tracking error portfolios (TEPs) are Mean-Variance (MV) suboptimal.
- Nonetheless, estimation error is severe in portfolio analysis.

Findings

- **Roll** was right: tracking the index does reduce estimation error.
- The benefits of tracking the index outweigh the cost of estimating additional parameters.
The Model

- Two investors A and B
- Both investors choose the same $d \in D$ set of assets
- Both investors have the same level of risk tolerance
- Investor A solves for an MV optimal portfolio
- Investor B tracks the benchmark while maximizing excess return

\[x_B = x_A + \alpha_2 (1) \]

\[\alpha_2 = \sigma_2 \beta \cdot B (2) \]

where B is a non-linear function of Σ and independent of μ.
The Model

- Two investors A and B
- Both investors choose the same $d \in \mathcal{D}$ set of assets
- Both investors have the same level of risk tolerance
- Investor A solves for an MV optimal portfolio
- Investor B tracks the benchmark while maximizing excess return
- It follows that
 \[x^B = x^A + \alpha_2 \]
 (1)
- α_2 is an arbitrage portfolio tilted toward the market direction, such that
 \[\alpha_2 = \sigma_b^2 \cdot \mathbf{B} \beta \]
 (2)
- where \mathbf{B} is a non-linear function of Σ and independent of μ
From MV perspective, x^B is sub-optimal to x^A
Estimation Error

- In practice, the model’s parameters are unknown and decisions are based on historical data.
- Let \(\hat{x} \) denote the estimate of \(x \), then we have
 \[
 \hat{x}^B = \hat{x}^A + \hat{\alpha}_2
 \] (3)

Main Findings

- The market component, \(\hat{\alpha}_2 \), is an unbiased estimate of \(\alpha_2 \).
- The bias in \(\hat{x}^B \) is mainly due to the MV portfolio, \(\hat{x}^A \).
- The difference in estimation error between portfolio \(\hat{x}^B \) and \(\hat{x}^A \) is determined by a scalar \(\lambda \), such that
 \[
 \Delta = \text{MSE}(\hat{x}^B) - \text{MSE}(\hat{x}^A) = \lambda^T - d - 1
 \] (4)

where,
 \[
 \text{MSE}(x) = \text{Var}(x) + \text{bias}(x)^2
 \]
Estimation Error

- In practice, the model’s parameters are unknown and decisions are based on historical data.
- Let \(\hat{x} \) denote the estimate of \(x \), then we have
 \[
 \hat{x}^B = \hat{x}^A + \hat{\alpha}_2
 \]
 (3)

Main Findings

- The market component, \(\hat{\alpha}_2 \), is unbiased estimate of \(\alpha_2 \).
- The bias in \(\hat{x}^B \) is mainly due to the MV portfolio, \(\hat{x}^A \).
- The difference in estimation error between portfolio \(\hat{x}^B \) and \(\hat{x}^A \) is determined by a scalar \(\lambda \), such that
 \[
 \Delta = MSE(\hat{x}^B) - MSE(\hat{x}^A) = \frac{\lambda}{T - d - 1} \]
 (4)

 where, \(MSE(x) = Var(x) + bias(x)^2 \)
Looking at all stocks listed on S&P 500 starting from Jan 2000, we run the following test:

1. Set $r = 1$
2. Randomly draw a d subset of assets
3. Pick the first T days and estimate the model inputs
4. Compute all relevant metrics along with the MSE difference, Δ, from (4)
5. Average the diagonal elements of Δ, yielding $\bar{\Delta}(r)$
6. $r \rightarrow r + 1$ and repeat till $r > 1000$

Eventually, the experiment returns the following statistic:

$$Z_{\bar{\Delta}} = \frac{\bar{\Delta}}{\sigma(\bar{\Delta})} = \frac{\sum_{r=1}^{1000} \bar{\Delta}(r)/1000}{\sqrt{\sum_{r=1}^{1000} [\bar{\Delta}(r) - \bar{\Delta}]^2 /1000}}$$ (5)
Table: Estimation error difference between B and A

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>Δ</th>
<th>Z_Δ</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>-0.40</td>
<td>-0.79</td>
<td>0.77</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>-0.54</td>
<td>-2.19</td>
<td>0.88</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>-0.32</td>
<td>-2.79</td>
<td>0.89</td>
</tr>
<tr>
<td>$d = 20$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>-0.55</td>
<td>-1.65</td>
<td>0.94</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>-0.58</td>
<td>-3.34</td>
<td>1.01</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>-0.34</td>
<td>-4.26</td>
<td>1.00</td>
</tr>
<tr>
<td>$d = 40$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>-0.68</td>
<td>-2.81</td>
<td>1.25</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>-0.59</td>
<td>-4.49</td>
<td>1.25</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>-0.34</td>
<td>-5.67</td>
<td>1.20</td>
</tr>
</tbody>
</table>