

Creating an R Database

Patrick Howerter

Schwab Equity Ratings Department

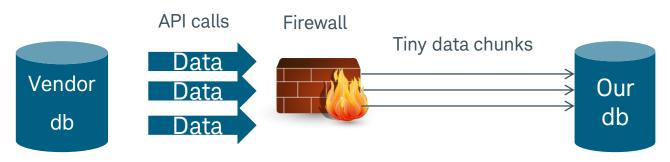
Analysts spend a lot time preparing data...

- Analysts spend 60 to 90% of their time preparing their data
- Many analysts are not database experts
 - -Develop research that is not shareable or reproducible
- Quants are expected to use near perfect data (<u>SR 11-7</u>)
- Models developed in R rarely translate into Production

Research Platform

- Free flowing data from multiple sources
- A lot of history being analyzed(20+ years)
- Quality not rigorously checked
- Timeliness of updates not critical (Generous lead time to fix data issues)

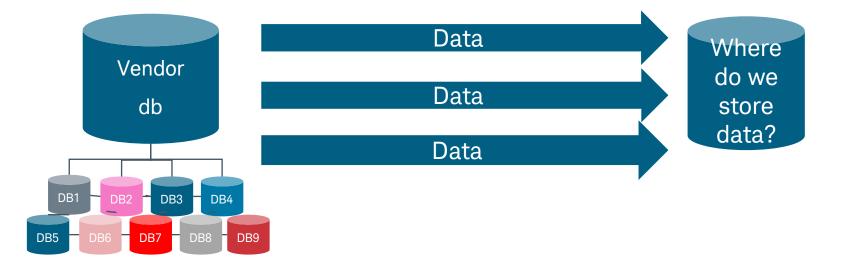
Production


- Limited amount of data sources
- Run time is usually faster than a backtest since a current slice of data is used compared to a backtest
- Regulated and requires verification and validation
- Requires redundancy as data delays/outages are disastrous

Common Use Case (ETL process)

Using the API for Production AND Research

Use the vendor's API to call organized data. Downloads via HTTPS


Issues

- Vendors limit download speeds to accommodate multiple clients
- No transparency of data inputs
- Download time outs happen
- Can take many days to re-build historical database
- Maintaining corporate actions becomes onerous (revisions and restatements might require a full rebuild)

Conclusion: Convenient to use but takes too long to download extensive history and not reliable enough to run in Production

Gathering the Raw Data

Use a Database of the raw data inputs

- SQL Data is "tidy" but data attributes are different (mapping, corporate actions, date dimensions)
- Need a common way to gather our data from different formats so we can analyze all data in the same manner

Organizing input data into an Analytical database

Option 1

Use R functions to call SQL stored procedures:

Pros

- Always calling "fresh" data
- No database maintenance

Cons

- SQL and most relational database are intended to store rather than analyze data
- SQL inefficient when returning time series data
- Authentication every time that SQL is called
- Learning to develop SQL code and not R code

Option 2

Download raw SQL data then transform the data using R code:

Pros

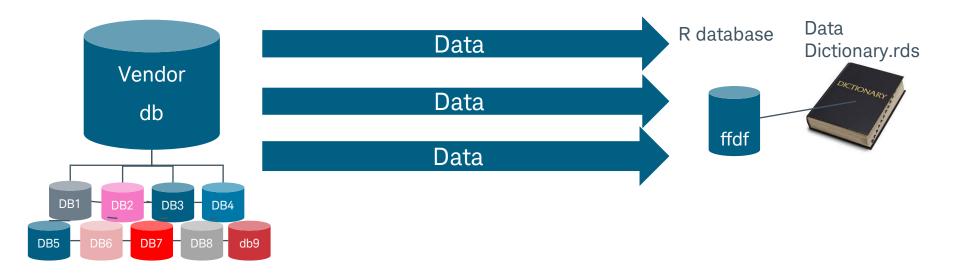
- Mostly select statements (SQL's Strengths)
- More time spent coding R!

Cons

- Maintaining a database (what type?)
- Virtual memory easily overloaded when you download large chunks of data!

Using the ff and ETLUtils Packages

ff::ffdf


- Writes R objects to disk
- Use the object as an array (ff) or as a data.frame (ffdf)
- Can save the connections (structure attributes) to the objects and re-open them
- Has attributes such as read-only to allow multiple user to access

the sa	\$ \ \$ F \$ F \$ F \$ F \$ F \$ P y phys \$	ual: 'data.frame': 4 obs. of 7 variables: /irtualVmode : chr "integer" "integer" "integer" "doubl€
		fdfExample[1:10,]
		ECINTCODE DATADATE Item Value_
	1	39383 20030930 14 5076
	2	112692 20030930 14 5076
	3	39383 20030930 37 29943
	4	112692 20030930 37 29943
	5	39383 20030930 49 -521
	6	112692 20030930 49 -521
	7	20285 20020050 21 5221

ETLUtils::read.odbc.ffdf

- Executes the database syntax, creates an ffdf object, and loads the data
- Uses ODBC, JDBC, and DBI connections
- Can specify chunk sizes to manage virtual memory
- Can run in parallel processing because you are writing to disk!!!!
- Save your data connections in an RDS file and use them again
- Store the data back into a database for point-in-time research by using load.odbc.ffdf

Success!

- Organized over 10 vendors database schemas into one common r database
- Extracted 30 of 700 GBs of SQL data into an R database
- Can download our historical database daily in 1.5 hours with about 200 simple data calls running in parallel
- Multiple users accessing the same database just by opening a data dictionary Rds file.

Steps to Becoming an ETL Ninja

- Find the data source and write a download script to ff files.
 - -If the data is in a database use the read.odbc.ffdf command
 - -If you are reading in files from another source into a data frame, convert the object to ffdf using the as.ffdf() command.
- When you are satisfied with your ffdf structure then execute save.ffdf command and store the names of your ffdf files into .Rds files (persistent layer)
- The next time you log into your database use your Rds files to load in your ffdf objects!

Credits

 citation('ff') Daniel Adler, Christian Gläser, Oleg Nenadic, Jens Oehlschlägel and Walter Zucchini (2014). ff: memory-efficient storage of large data on disk and fast access functions. R package version 2.2-13. <u>http://CRAN.R-</u> project.org/package=ff

 citation('ETLUtils') Jan Wijffels (2015). ETLUtils: Utility Functions to Execute Standard Extract/Transform/Load Operations (using Package 'ff') on Large Data. R package version 1.3. <u>http://CRAN.R-project.org/package=ETLUtils</u>

Thank You!

Oun your tomorrow