Modeling Divergence Swap Rates

Piotr Orłowski

University of Lugano and Swiss Finance Institute

May 20th, 2016, Chicago
From VIX to power divergence (Schneider and Trojani (2015))

CBOE (2000) calculates the Volatility Index...

$$VIX_t^2 = \frac{2}{T} \sum_j \frac{\Delta K_j}{K_j^2} Q_t(K_j) \approx \frac{2}{T} \int_0^\infty \frac{Q_t(K)}{K^2} dK = -2\mathbb{E}_t^Q \left[\ln \frac{F_T}{F_t} + \sum_{\tau=1}^T \delta_{\tau-1}(F_T - F_{\tau-1}) \right]$$

$$D_p(y, x) = \frac{y^p - x^p}{p(p-1)} - \frac{x^{p-1}(y - x)}{p-1}$$

$$D_0 = \lim_{p \to 0} D_p$$

$$\forall p \in \mathbb{R} \quad D_p(y, x) = O \left(\ln \frac{y}{x} \right)^2 \quad \text{for} \quad \ln \frac{y}{x} \to 0$$
From VIX to power divergence (Schneider and Trojani (2015))

CBOE (2000) calculates the Volatility Index...

\[\text{VIX}_t^2 = \frac{2}{T} \sum_j \frac{\Delta K_j}{K_j^2} Q_t(K_j) \approx \frac{2}{T} \int_0^\infty \frac{Q_t(K)}{K^2} dK = -2E_t^{Q_t} \left[\ln \frac{F_T}{F_t} + \sum_{\tau=1}^T \delta_{\tau-1} \left(F_T - F_{T-1} \right) \right] \]

\[D_p(y, x) = \frac{y^p - x^p}{p(p-1)} - \frac{x^{p-1}(y - x)}{p - 1} \quad \quad D_0 = \lim_{p \to 0} D_p \]

\[\forall p \in \mathbb{R} \quad D_p(y, x) = O \left(\ln \frac{y}{x} \right)^2 \quad \text{for} \quad \ln \frac{y}{x} \to 0 \]
From VIX to power divergence (Schneider and Trojani (2015))

CBOE (2000) calculates the Volatility Index...

\[\text{VIX}_t^2 = \frac{2}{T} \sum_j \frac{\Delta K_j}{K_j^2} Q_t(K_j) \approx \frac{2}{T} \int_0^\infty \frac{Q_t(K)}{K^2} dK = -2E_t^Q \left[\ln \frac{F_T}{F_t} + \sum_{\tau=1}^T \delta_{\tau-1}(F_T - F_{\tau-1}) \right] \]

\[D_p(y, x) = \frac{y^p - x^p}{p(p-1)} - \frac{x^{p-1}(y-x)}{p-1} \quad D_0 = \lim_{p \to 0} D_p \]

\[\forall p \in \mathbb{R} \quad D_p(y, x) = O\left(\ln \frac{y}{x}\right)^2 \text{ for } \ln \frac{y}{x} \to 0 \]
From VIX to power divergence (Schneider and Trojani (2015))

CBOE (2000) calculates the Volatility Index...

\[\text{VIX}_t^2 = -2\mathbb{E}_t^Q \left[\ln \frac{F_T}{F_t} + \sum_{\tau=1}^{T} \frac{F_{\tau} - F_{\tau-1}}{F_{\tau-1}} \right] \rightarrow \mathbb{E}_t^Q \left[\int_t^T \sigma_s^2 ds + \sum_{t \leq s \leq T} 2D_0(F_s, F_{s-}) \right] \]

\[D_p(y, x) = \frac{y^p - x^p}{p(p-1)} - \frac{x^{p-1}(y-x)}{p-1} \quad \quad D_0 = \lim_{p \to 0} D_p \]

\[\forall p \in \mathbb{R} \quad D_p(y, x) = O \left(\ln \frac{y}{x} \right)^2 \quad \text{for} \quad \ln \frac{y}{x} \to 0 \]
From VIX to power divergence (Schneider and Trojani (2015))

CBOE (2000) calculates the Volatility Index... The foundation of the volatility / variance swap market

\[
VIX_t^2 = -2E_t^Q \left[\ln \frac{F_T}{F_t} + \sum_{\tau=1}^{T} \frac{F_{\tau} - F_{\tau-1}}{F_{\tau-1}} \right] \rightarrow E_t^Q \left[\int_t^T \sigma_s^2 ds + \sum_{t \leq s \leq T} 2D_0(F_s, F_{s-}) \right]
\]

\[
D_p(y, x) = \frac{y^p - x^p}{p(p-1)} - \frac{x^{p-1}(y - x)}{p-1}
\]

\[
D_0 = \lim_{p \to 0} D_p
\]

\[
\forall p \in \mathbb{R}, \quad D_p(y, x) = O \left(\ln \frac{y}{x} \right)^2 \text{ for } \ln \frac{y}{x} \to 0
\]
From VIX to power divergence (Schneider and Trojani (2015))

CBOE (2000) calculates the Volatility Index... The foundation of the volatility / variance swap market

\[VIX_t^2 = 2 \mathbb{E}_t^Q \left[\sum_{\tau=1}^{T} D_0(F_{\tau}, F_{\tau-1}) \right] \rightarrow \mathbb{E}_t^Q \left[\int_t^T \sigma_s^2 ds + \sum_{t \leq s \leq T} 2D_0(F_s, F_{s-}) \right] \]

\[D_p(y, x) = \frac{y^p - x^p}{p(p-1)} - \frac{x^{p-1}(y-x)}{p-1} \quad D_0 = \lim_{p \to 0} D_p \]

\[\forall p \in \mathbb{R} \quad D_p(y, x) = O \left(\ln \frac{y}{x} \right)^2 \text{ for } \ln \frac{y}{x} \to 0 \]
From VIX to power divergence (Schneider and Trojani (2015))

CBOE (2000) calculates the Volatility Index... The foundation of the volatility / variance swap market

\[VIX_t^2 = 2 E_t^Q \left[\sum_{\tau=1}^{T} D_0(F_\tau, F_{\tau-1}) \right] \rightarrow E_t^Q \left[\int_t^T \sigma_s^2 ds + \sum_{t \leq s \leq T} 2D_0(F_s, F_{s-}) \right] \]

\[D_p(y, x) = \frac{y^p - x^p}{p(p-1)} - \frac{x^{p-1}(y - x)}{p - 1} \]

\[D_0 = \lim_{p \to 0} D_p \]

\[\forall p \in \mathbb{R} \quad D_p(y, x) = O \left(\ln \frac{y}{x} \right)^2 \text{ for } \ln \frac{y}{x} \to 0 \]
From VIX to power divergence (Schneider and Trojani (2015))

CBOE (2000) calculates the Volatility Index... The foundation of the volatility / variance swap market

\[
VIX_t^2 = 2\mathbb{E}_t^Q \left[\sum_{\tau=1}^{T} D_0(F_{\tau}, F_{\tau-1}) \right] \rightarrow \mathbb{E}_t^Q \left[\int_t^T \sigma_s^2 ds + \sum_{t \leq s \leq T} 2D_0(F_s, F_{s-}) \right]
\]

\[
D_p(y, x) = \frac{y^p - x^p}{p(p-1)} - \frac{x^{p-1}(y - x)}{p - 1}
\]

\[
D_0 = \lim_{p \to 0} D_p
\]

\[
\forall p \in \mathbb{R} \quad D_p(y, x) = O \left(\ln \frac{y}{x} \right)^2 \quad \text{for} \quad \ln \frac{y}{x} \to 0
\]
From VIX to power divergence (Schneider and Trojani (2015))

CBOE (2000) calculates the Volatility Index... The foundation of the volatility / variance swap market

\[
VIX_t^2 = 2 \mathbb{E}_t^Q \left[\sum_{\tau=1}^{T} D_0(F_\tau, F_{\tau-1}) \right] \rightarrow \mathbb{E}_t^Q \left[\int_t^T \sigma_s^2 ds + \sum_{t \leq s \leq T} 2D_0(F_s, F_{s-}) \right]
\]

\[
D_p(y, x) = \frac{y^p - x^p}{p(p-1)} - \frac{x^{p-1}(y - x)}{p - 1} \quad D_0 = \lim_{p \to 0} D_p
\]

\[\forall p \in \mathbb{R} \quad D_p(y, x) = O\left(\ln \frac{y}{x}\right)^2 \text{ for } \ln \frac{y}{x} \to 0\]

- \(VIX^2\) with the appropriate realized leg trading strategy is an exact 0-divergence swap. Almost variance swap.
From VIX to power divergence (Schneider and Trojani (2015))

CBOE (2000) calculates the Volatility Index... The foundation of the volatility / variance swap market

\[VIX_t^2 = 2\mathbb{E}_t^Q \left[\sum_{\tau=1}^{T} D_0(F_\tau, F_{\tau-1}) \right] \rightarrow \mathbb{E}_t^Q \left[\int_t^T \sigma_s^2 ds + \sum_{t \leq s \leq T} 2D_0(F_s, F_{s-}) \right] \]

\[D_p(y, x) = \frac{y^p - x^p}{p(p-1)} - \frac{x^{p-1}(y-x)}{p-1} \quad D_0 = \lim_{p \to 0} D_p \]

\[\forall p \in \mathbb{R} \quad D_p(y, x) = O \left(\ln \frac{y}{x} \right)^2 \text{ for } \ln \frac{y}{x} \to 0 \]

- \(VIX^2 \) with the appropriate realized leg trading strategy is an exact 0-divergence swap. Almost variance swap.
- Family of power divergence functions \(D_p \) defines family of (first-order) quadratic variation swaps. Compare with Bondarenko (2014); Martin (2012); Lee (2010).
- Weights \(\frac{\partial^2}{\partial K^2} D_p(K, x) = \frac{1}{K^p} \).
From VIX to power divergence (Schneider and Trojani (2015))

CBOE (2000) calculates the Volatility Index... The foundation of the volatility / variance swap market

\[VIX_t^2 = 2\mathbb{E}_t^Q \left[\sum_{\tau=1}^{T} D_0(F_{\tau}, F_{\tau-1}) \right] \rightarrow \mathbb{E}_t^Q \left[\int_t^T \sigma_s^2 ds + \sum_{t \leq s \leq T} 2D_0(F_s, F_{s-}) \right] \]

\[D_p(y, x) = \frac{y^p - x^p}{p(p-1)} - \frac{x^{p-1}(y-x)}{p-1} \quad D_0 = \lim_{p \to 0} D_p \]

\[\forall p \in \mathbb{R} \quad D_p(y, x) = O \left(\ln \frac{y}{x} \right)^2 \quad \text{for} \quad \ln \frac{y}{x} \to 0 \]

- \(VIX^2 \) with the appropriate realized leg trading strategy is an exact 0-divergence swap. Almost variance swap.
- Family of power divergence functions \(D_p \) defines family of (first-order) quadratic variation swaps. Compare with Bondarenko (2014); Martin (2012); Lee (2010).
- Weights \(\frac{\partial^2}{\partial K^2} D_p(K, x) = \frac{1}{K^p} \).
- HF limits:

\[\frac{1}{F_t^p} \sum_{\tau=1}^{T} D_p(F_{\tau}, F_{\tau-1}) \rightarrow \frac{1}{2} \int_t^T \left(\frac{F_s}{F_t} \right)^p \sigma_s^2 ds + \sum_{t \leq s \leq T} \frac{D_p(F_s, F_{s-})}{F_t} \]

- \(1/F^p \) scaling essential → notation: \(\bar{D}_p = \frac{D_p(F_s, F_t)}{F_t^p} \).
Higher-order swaps

- AJD models not bad at fitting TS of Variance Swaps \rightarrow how many SV factors? Gruber et al. (2015); Andersen et al. (2015).
- Variation in p in divergence swaps \rightarrow another dimension for fitting.

Fully replicable realized measures allow to define higher-order risk premia. D_p, S_p and Q_p highly correlated \rightarrow standardise:

$$S_p := \frac{D_p}{2}$$

$$Q_p := \frac{S_p}{2}$$
Higher-order swaps

- AJD models not bad at fitting TS of Variance Swaps \(\rightarrow \) how many SV factors? Gruber et al. (2015); Andersen et al. (2015).
- Variation in \(p \) in divergence swaps \(\rightarrow \) another dimension for fitting.
- Take a difference...

\[
\frac{1}{2\varepsilon} \left(\frac{D_{p_0+\varepsilon}(F_T, F_t)}{F_{t_0+\varepsilon}} - \frac{D_{p_0-\varepsilon}(F_T, F_t)}{F_{t_0-\varepsilon}} \right) = O \left(\ln \frac{F_T}{F_t} \right)^3
\]
Higher-order swaps

- AJD models not bad at fitting TS of Variance Swaps → how many SV factors? Gruber et al. (2015); Andersen et al. (2015).
- Variation in p in divergence swaps → another dimension for fitting.
- ... or differentiate.

$$\frac{\partial}{\partial p} \frac{D_p(F_T, F_t)}{F_t^p} = O \left(\ln \frac{F_T}{F_t} \right)^3$$

Fully replicable realized measures allow to define higher-order risk premia. D_p, S_p and Q_p highly correlated → standardise:

$$\bar{S}_p := S_p \frac{D_p}{2}$$

$$\bar{Q}_p := S_p \frac{D_p}{p}$$
Higher-order swaps

- AJD models not bad at fitting TS of Variance Swaps → how many SV factors? Gruber et al. (2015); Andersen et al. (2015).
- Variation in \(p \) in divergence swaps → another dimension for fitting.
- Rinse and repeat.

\[
\frac{\partial^2}{\partial p^2} \frac{D_p(F_T, F_t)}{F_t^p} = O \left(\ln \frac{F_T}{F_t} \right)^4
\]

Exactly tradable with static option portfolio and forward trading under any dynamics. Corresponding realized measures:

\[
\frac{1}{T} \sum_{\tau=1}^{T} s \cdot (p(F_{\tau}, F_{\tau-1}) - 1) + \frac{1}{2} \int_T^T s \cdot \left(F_s F_t \right) p \ln F_s F_t \sigma_s^2 ds + \sum_{t \leq s \leq T} (p(F_s - F_t) - D_p(F_s, F_{s-1}))
\]

\[
\frac{1}{T} \sum_{\tau=1}^{T} Q_p(F_{\tau}, F_{\tau-1}) \rightarrow \frac{1}{2} \int_T^T s \cdot \left(F_s F_t \right) p \ln 2 F_s F_t \sigma_s^2 ds + \sum_{t \leq s \leq T} (p(F_s - F_t) - D_p(F_s, F_{s-1}))
\]

Fully replicable realized measures allow to define higher-order risk premia. \(D_p, S_p \) and \(Q_p \) highly correlated → standardise:

\[
\bar{S}_p := S_p \cdot \frac{3}{2} p \quad \bar{Q}_p := S_p \cdot \frac{2}{p}
\]
Higher-order swaps

- AJD models not bad at fitting TS of Variance Swaps → how many SV factors? Gruber et al. (2015); Andersen et al. (2015).
- Variation in p in divergence swaps → another dimension for fitting.
- Define
 \[S_p := \frac{\partial}{\partial p} \frac{D_p(F_T, F_t)}{F_t^p} \quad Q_p := \frac{\partial^2}{\partial p^2} \frac{D_p(F_T, F_t)}{F_t^p} \]
 - **Exactly** tradable with static option portfolio and forward trading under any dynamics.
Higher-order swaps

- AJD models not bad at fitting TS of Variance Swaps → how many SV factors? Gruber et al. (2015); Andersen et al. (2015).
- Variation in \(p \) in divergence swaps → another dimension for fitting.
- Define
 \[
 S_p := \frac{\partial}{\partial p} \frac{D_p(F_T, F_t)}{F_t^p} \quad Q_p := \frac{\partial^2}{\partial p^2} \frac{D_p(F_T, F_t)}{F_t^p}
 \]

 Exactly tradable with static option portfolio and forward trading under any dynamics.

- Corresponding realized measures:
 \[
 \sum_{\tau=1}^{T} S_p(F_{\tau}, F_{\tau-1}) \to \frac{1}{2} \int_t^T \left(\frac{F_s}{F_t} \right)^p \ln \frac{F_s}{F_t} \sigma_s^2 ds + \sum_{t \leq s \leq T} \left(\frac{F_s}{F_t} \right)^p \ln \frac{F_s}{F_t} D_p(F_s, F_{s-})
 \]
 \[
 \sum_{\tau=1}^{T} Q_p(F_{\tau}, F_{\tau-1}) \to \frac{1}{2} \int_t^T \left(\frac{F_s}{F_t} \right)^p \ln^2 \frac{F_s}{F_t} \sigma_s^2 ds + \sum_{t \leq s \leq T} \left(\frac{F_s}{F_t} \right)^p \ln^2 \frac{F_s}{F_t} D_p(F_s, F_{s-})
 \]
Higher-order swaps

- AJD models not bad at fitting TS of Variance Swaps → how many SV factors? Gruber et al. (2015); Andersen et al. (2015).
- Variation in p in divergence swaps → another dimension for fitting.
- Define
 \[S_p := \frac{\partial}{\partial p} D_p(F_T, F_t) \]
 \[Q_p := \frac{\partial^2}{\partial p^2} D_p(F_T, F_t) \]
- **Exactly** tradable with static option portfolio and forward trading under any dynamics.
- Corresponding realized measures:
 \[
 \sum_{\tau=1}^{T} S_p(F_\tau, F_{\tau-1}) \rightarrow \frac{1}{2} \int_t^T \left(\frac{F_s}{F_t} \right)^p \ln \frac{F_s}{F_t} \sigma_s^2 ds + \sum_{t \leq s \leq T} \left(\frac{F_s}{F_t} \right)^p \ln \frac{F_s}{F_t} D_p(F_s, F_{s-})
 \]
 \[
 \sum_{\tau=1}^{T} Q_p(F_\tau, F_{\tau-1}) \rightarrow \frac{1}{2} \int_t^T \left(\frac{F_s}{F_t} \right)^p \ln^2 \frac{F_s}{F_t} \sigma_s^2 ds + \sum_{t \leq s \leq T} \left(\frac{F_s}{F_t} \right)^p \ln^2 \frac{F_s}{F_t} D_p(F_s, F_{s-})
 \]
- Fully replicable realized measures allow to define higher-order risk premia.
Higher-order swaps

- AJD models not bad at fitting TS of Variance Swaps → how many SV factors? Gruber et al. (2015); Andersen et al. (2015).
- Variation in p in divergence swaps → another dimension for fitting.
- Define

$$S_p := \frac{\partial}{\partial p} \frac{D_p(F_T, F_t)}{F_t^p} \quad \quad Q_p := \frac{\partial^2}{\partial p^2} \frac{D_p(F_T, F_t)}{F_t^p}$$

- **Exactly** tradable with static option portfolio and forward trading under any dynamics.
- Corresponding realized measures:

$$\sum_{\tau=1}^{T} S_p(F_{\tau}, F_{\tau-1}) \rightarrow \frac{1}{2} \int_t^T \left(\frac{F_s}{F_t} \right)^p \ln \frac{F_s}{F_t} \sigma_s^2 ds + \sum_{t \leq s \leq T} \left(\frac{F_{s-}}{F_t} \right)^p \ln \frac{F_{s-}}{F_t} D_p(F_s, F_{s-})$$

$$\sum_{\tau=1}^{T} Q_p(F_{\tau}, F_{\tau-1}) \rightarrow \frac{1}{2} \int_t^T \left(\frac{F_s}{F_t} \right)^p \ln^2 \frac{F_s}{F_t} \sigma_s^2 ds + \sum_{t \leq s \leq T} \left(\frac{F_{s-}}{F_t} \right)^p \ln^2 \frac{F_{s-}}{F_t} D_p(F_s, F_{s-})$$

- Fully replicable realized measures allow to define higher-order risk premia.
- D_p, S_p and Q_p highly correlated → standardise:

$$\bar{S}_p := \frac{S_p}{D_p^{3/2}} \quad \quad \bar{Q}_p := \frac{S_p}{D_p^2}$$
Empirical motivation – S&P 500 options

Price of divergence portfolio (annualised)

\[p = 0.5 \]

Implied volatility (ATM)
Empirical motivation – S&P 500 options

Price of skewness portfolio (scaled)

$p = 0.5$

Implied volatility slope at log-strike $k = -3/\left(\sigma_{ATM} \sqrt{\tau}\right)$
Empirical motivation – S&P 500 options

- Prices of variation swaps at range of \(p \) and \(\tau \) contain the same information as the IV surface;
- Forming option portfolios might alleviate measurement error, particularly for deep OTM contracts;
- Variation swaps are exactly tradable. IV is not. Who knows what IV is anyway?
Empirical motivation – S&P 500 options

- Variation swaps are exactly tradable. IV is not. Who knows what IV is anyway?
Affine Jump Diffusion models are a popular (and somewhat successful) modeling tool.

State variables: \(X_t = [\ln S_t / S_{t-s}, V_{1t}, \ldots, V_{M_t}] \), \(V_t := X_t[-1] \)

\[
E^M_t \left[e^{u \cdot X_{t+s}} \right] = e^{\alpha(s,u) + \beta(s,u) \cdot V_t}, \quad u \in \mathbb{C}^{M+1}
\]
Affine Jump Diffusion models are a popular (and somewhat successful) modeling tool.

State variables: \(X_t = \left[\ln \frac{S_t}{S_{t-s}} \ V_{1t} \ \ldots \ \ V_{Mt} \right], \ V_t := X_t[-1] \)

\[
\mathbb{E}_t^M \left[e^{u \cdot X_{t+s}} \right] = e^{\alpha(s,u)+\beta(s,u) \cdot V_t}, \quad u \in \mathbb{C}^{M+1}
\]

Easily calculate \(\bar{D}_{p,t,s}, \bar{S}_{p,t,s}, \bar{Q}_{p,t,s} \) in model (MGF and derivatives).
Divergence in Affine Jump Diffusions

- Affine Jump Diffusion models are a popular (and somewhat successful) modeling tool.
- State variables: \(X_t = [\ln S_t/S_t]_s \ V_{1t} \ \ldots \ \ V_{Mt} \), \(V_t := X_t[-1] \)

\[
\mathbb{E}_t^M \left[e^{u \cdot X_{t+s}} \right] = e^{\alpha(s,u)+\beta(s,u) \cdot V_t}, \quad u \in \mathbb{C}^{M+1}
\]

- Easily calculate \(\bar{D}_{p,t,s}, \bar{S}_{p,t,s}, \bar{Q}_{p,t,s} \) in model (MGF and derivatives).
- Observable quantities: \(\frac{\Delta S_{t+1}}{S_t}, \ \bar{D}_{p,t+1,s}, \ \bar{S}_{p,t+1,s}, \ \bar{Q}_{p,t+1,s} \): functions of \([V_t \ V_{t+1}]\)
Divergence in Affine Jump Diffusions

- Affine Jump Diffusion models are a popular (and somewhat successful) modeling tool.
- State variables:
 \[X_t = \left[\ln S_t / S_{t-s} \ V_{1t} \ \ldots \ V_{Mt} \right], \quad V_t := X_t[-1] \]
 \[\mathbb{E}^M_t \left[e^{u \cdot X_{t+s}} \right] = e^{\alpha(s,u) + \beta(s,u) \cdot V_t}, \quad u \in \mathbb{C}^{M+1} \]
- Easily calculate \(\bar{D}_{p,t,s}, \bar{S}_{p,t,s}, \bar{Q}_{p,t,s} \) in model (MGF and derivatives).
- Observable quantities: \(\frac{\Delta S_{t+1}}{S_t}, \bar{D}_{p,t+1,s}, \bar{S}_{p,t+1,s}, \bar{Q}_{p,t+1,s} \): functions of \([V_t \ V_{t+1}]\)
- Latent volatility factor dynamics:
 \[\Delta V_{t+1} = \mu_{t+1}^V + \Sigma_{t+1}^V \cdot W_{t+1}, \quad \mu_{t+1}^V, \Sigma_{t+1}^V : \text{non-linear functions of } V_t \]
Affine Jump Diffusion models are a popular (and somewhat successful) modeling tool.

State variables: \(X_t = [\ln S_t / S_{t-s} \ V_{1t} \ \ldots \ V_{Mt}], \ V_t := X_t[-1] \)

\[
E^M_t \left[e^{u \cdot X_{t+s}} \right] = e^{\alpha(s,u) + \beta(s,u) \cdot V_t}, \quad u \in \mathbb{C}^{M+1}
\]

Easily calculate \(\bar{D}_{p,t,s}, \bar{S}_{p,t,s}, \bar{Q}_{p,t,s} \) in model (MGF and derivatives).

Observable quantities: \(\Delta S_{t+1} / S_t, \bar{D}_{p,t+1,s}, \bar{S}_{p,t+1,s}, \bar{Q}_{p,t+1,s} \): functions of \([V_t \ V_{t+1}]\).

Latent volatility factor dynamics:

\[
\Delta V_{t+1} = \mu_{t+1}^V + \Sigma^V_{t+1} \cdot W_{t+1}, \quad \mu_{t+1}^V, \Sigma^V_{t+1} : \text{non-linear functions of } V_t
\]

Unscented Kalman Filter – counterfactual assumption of \(W_t \sim N(0, I_{M \times M}) \);

Specification of model under \(\mathbb{Q} \rightarrow \text{Risk Premia} \rightarrow \text{specification under } \mathbb{P} \);

Reasonable performance in simulated settings.
Preliminary results

- First estimations with $p = 1/2$ (symmetric swaps), maturities 1M, 6M;
- In three factor specification possible to identify:
 - a variance-level factor,
 - a common factor for \tilde{S} and \tilde{Q},
 - a term-structure factor driving the slopes of the \tilde{S} and \tilde{Q} TS.
- Existing challenges:
 - Improvements in fit of \tilde{S} and \tilde{Q} at the price of bad \tilde{D} fit;
 - \rightarrow not enough flexibility in the model’s pricing properties.
- Key for improvement:
 - Careful modeling of jump distributions (Exp-Laplace co-jumps, but see Bollerslev and Todorov (2014));
 - Inclusion of purely diffusive vol factor that does not drive jumps;
- Further work:
 - Implementing more flexible jump specifications;
 - Estimation with a greater number of swap contracts (e.g. $p = 0$, more maturities);
 - Inference about risk premia.
affineModelR

Numeric backend for handling \mathbb{P} and \mathbb{Q} Characteristic Functions of (almost) arbitrarily specified Affine Jump-Diffusion models. Semi-closed form solutions for up to 3rd derivative wrt the stock price argument. Solutions for $\mathbb{E}_s^\mathbb{P} \left[\left(\frac{\Delta S_{t+1}}{S_t} \right)^k (\Delta V_j)^m \right]$ for $m + k \leq 2$, $m, k > 0$. Use with package `transformOptionPricer` for vanilla options.

divergenceModelR

Model-based pricing of divergence and higher-order swaps. Unscented Kalman Filters for estimation of AJD models. Builds against `affineModelR` and `ukfRcpp`.

ukfRcpp

Rcpp implementation of an Unscented Kalman Filter class. Users have to write C++ functions for handling the state dynamics and observation equation, then write an Rcpp function to create an ukfClass object and filter to return states or likelihood value.

Rlibcmaes by András Sali

R bindings for the `libcmaes` optimisation library.
Section 1

References

