LEVERAGING AZURE FROM R

AZURE SPARK AND MPI CLUSTERS FROM R

Doug Service
Stephen Weller
Daniel Hanson
July 3, 2016

Microsoft Machine Learning
Revolution Analytics

©Microsoft 2015

R/Finance 2016
1. Introduction

2. Azure

3. MPI Cluster

4. Portfolio Optimization Demo
INTRODUCTION
Goals

Leverage Azure compute clusters from R to solve compute or data parallel finance problems faster

1. Login to Azure accounts with $200 spending limit you can use during and after the presentation
2. Run and review R demos on pre-configured R Server Spark and MPI compute clusters
Azure

Advantages

Eliminates the expense of buying, maintaining, and continually upgrading a data center. Only pay for the resources you use.

Microsoft facility in Quincy Washington
Advantages

Build Spark, Hadoop, MPI compute clusters in Azure Portal, or languages such as Bash, PowerShell, node.js, or C# to access from R.
Azure is a collection of integrated cloud services

- **Compute - virtual machines (VMs)**
 - Linux: Ubuntu, Redhat, CentOS...
 - Windows: Windows Server, Windows Enterprise...
- **Networking - connect VMs**
 - Internal virtual network
 - Public IP address and domain name
- **Database - deploy to VMs**
 - Oracle, OrientDB, Redis, SQL Server, MySQL
- **Data Analytics - pre-configured**
 - HDInsight, Stream Analytics, Cloudera
- **Storage**
MPI Cluster
Four virtual machines

All Nodes: desktop + worker

- Ubuntu Server 16.04
- Open message passing interface (OpenMPI)
- Open secure shell (OpenSSH)
- Network file system (NFS)
- R plus packages

Desktop node

- Ubuntu Mate Cloudtop desktop
- X remote desktop protocol (XRDP)
- Visual Studio Code editor
- Sublime Text 3 editor
MPI Cluster

R Packages

- foreach
- doMPI
- Rmpi

Gotchas

- `rsh` (ssh) must work reciprocally from all nodes, requires both public and private SSH key files on every node.
- Development R scripts must be on all nodes in same location, best solution exports working directory on desktop node to compute nodes via Network File System (NFS).
- High performance configuration uses desktop in cloud due to high speed network connections to worker nodes.
PORTFOLIO OPTIMIZATION DEMO
Algorithm

- Select top 30% of stocks in each S&P index sector
 Industrials, Health Care, Information Technology etc.
- Form uniformly drawn random portfolios of 30 stocks
- Perform a minimum CVaR analysis on every portfolio
- Select the portfolio with the highest return
- Generate the efficient frontier for highest return portfolio
Optimization Run Time

<table>
<thead>
<tr>
<th>Transport</th>
<th>Machines</th>
<th>Threads</th>
<th>Time (mins)</th>
<th>Script</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1</td>
<td>1</td>
<td>4.3162</td>
<td>RunPortST.sh</td>
</tr>
<tr>
<td>MPI</td>
<td>1</td>
<td>4</td>
<td>1.6641</td>
<td>RunPortMT.sh</td>
</tr>
<tr>
<td>MPI</td>
<td>4</td>
<td>1</td>
<td>1.4296</td>
<td>RunPortMPI.sh</td>
</tr>
</tbody>
</table>

RunAnalysis.sh - Generates analysis report
Demo Directory

/nfs/mpidemos/rfinance/RAzureCluster/demo/portfolioOptimization

Demo Files

- PortfolioMPI.R - portfolio optimization
- PortfolioMPIResults.R - generates optimization report
Using foreach

```r
eres <- foreach(cdx=1:nnode,.packages='fPortfolio') %dopar% {
    # Get the combinations for the current node.
    ncmbs <- cmbs[,rngs[cdx,1]:rngs[cdx,2]]
    ret <- list()
    for (idx in 1:ncol(ncmbs)) {
        ret <- c(ret,list(list(Cmb=cmbs[,idx],
                               Stats=calcMinCVaRPort(spxret.ts[,ncmbs[,idx]]))))
    }
    return(ret)
}
```
Review Portfolio optimization output