A BAYESIAN MULTIVARIATE FUNCTIONAL DYNAMIC LINEAR MODEL

Daniel R. Kowal
May 20, 2017
Cornell University and Rice University

Joint work with David S. Matteson and David Ruppert
Install and load the package **FDLM** from GitHub:

```r
devtools::install_github("drkowal/FDLM")
library(FDLM)
```
MULTIECONOMY YIELD CURVES:
A MULTIVARIATE TIME SERIES OF FUNCTIONAL DATA
FUNCTIONAL: $y(\tau)$
FUNCTIONAL (τ) + TIME SERIES (t): $y_t(\tau)$
FUNCTIONAL (τ) + TIME SERIES (t) + MULTIVARIATE (c): \(y_{t}^{(c)}(\tau) \)

Maturity (years)
Yield (%)
FED: 11/08
FED: 11/15
BOE: 11/08
BOE: 11/15
Dominant structural features in the data:

1. Functional
2. Time-dependence: time-ordered observations
3. Contemporaneous dependence: multivariate observations
A MULTIVARIATE FUNCTIONAL DYNAMIC LINEAR MODEL
A FUNCTIONAL DYNAMIC LINEAR MODEL (FDLM)

Functional Dynamic Linear Model (FDLM) [Kowal et al., 2016]:

\[y_t(\tau) = \sum_{k=1}^{K} f_k(\tau) \beta_{k,t} + \epsilon_t(\tau), \quad \tau \in \mathcal{T}, \quad t = 1, \ldots, T \]

Decompose a functional time series \(y_t \) into

- **functional component** \(\{ f_k(\tau) \}_{k=1}^{K} \)
- **time series component** \(\{ \beta_{k,t} \}_{k=1}^{K} \)

We model \(\beta_t = (\beta_{1,t}, \ldots, \beta_{K,t})' \) as the state vector in a DLM
Functional Dynamic Linear Model (FDLM) [Kowal et al., 2016]:

$$y_t(\tau) = \sum_{k=1}^{K} f_k(\tau) \beta_{k,t} + \epsilon_t(\tau), \quad \tau \in \mathcal{T}, \quad t = 1, \ldots, T$$

Dynamic functional factor model:

- \(\{f_k\}\) are factor loading curves
- \(\{\beta_{k,t}\}\) are dynamic factors
- \(K = \text{number of factors}\)
Suppose we observe $y_t = (y_t(t_1), \ldots, y_t(t_M))'$

Functional Dynamic Linear Model (FDLM):

$$\begin{cases}
 y_t = F \beta_t + \epsilon_t, \\
 \beta_t = G \beta_{t-1} + \omega_t
\end{cases}, \quad \epsilon_t \overset{\text{iid}}{\sim} N(0, \sigma^2_{\epsilon_t} I_M)$$

where $F = (f_1, \ldots, f_K)$, and $f_k = (f_k(t_1), \ldots, f_k(t_M))'$

Extensions for covariates, stochastic volatility, change points
Functional Dynamic Linear Model (FDLM):

\[
\begin{align*}
\mathbf{y}_t &= \mathbf{F}_t \mathbf{\beta}_t + \mathbf{\epsilon}_t, \\
\mathbf{\beta}_t &= \mathbf{G}_t \mathbf{\beta}_{t-1} + \mathbf{\omega}_t,
\end{align*}
\]

\[\mathbf{\epsilon}_t \overset{\text{indep}}{\sim} \mathcal{N}(\mathbf{0}, \sigma^2_{\mathbf{\epsilon}_t} \mathbf{I}_M)\]

\[\mathbf{\omega}_t \overset{\text{indep}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{W}_t)\]

For R implementation, use a state space package, such as KFAS [Helske, 2017]:

\[
\text{SSModel}(\mathbf{y}_t \sim -1 + \text{SSMcustom}(Z = \mathbf{F}, T = \mathbf{G}, Q = \mathbf{W}_t), H = \text{sigma}_\mathbf{\epsilon}_t^2)
\]
Nonparametric regression model for each f_k:

$$f_k(\tau) = \phi'(\tau)d_k$$

- $\phi(\cdot)$ known vector of basis functions (splines)
- d_k unknown vector of basis coefficients
- Include roughness penalty via the prior

$$d_k \sim N(0, \lambda_k^{-1}\Omega^{-1})$$

Flexible, computationally efficient, and smooth
MODEL IMPLEMENTATION:
MCMC SAMPLER
1. Sample the factors, $\{\beta_{k,t}\}$, using code from KFAS:

 \[
 \text{Beta} = \text{fdlm_factor}(...)
 \]

2. Sample the observation and evolution error variances:

 \[
 \text{sigma_e} = 1/\text{sqrt}(\text{rgamma}(...)) \\
 \text{Wt} = \text{sample_Wt}(...)
 \]

3. Sample the factor loading curves, $\{f_k\}$

 \[
 \text{D} = \text{sampleFLC}(...) \quad \# \text{basis coefficients}
 \]
FDLM CODE EXAMPLE: fdlm()

Read in the FED yield curve data (Y, tau, dates):
data("US_Yields")
#data("UK_Yields")

Restrict to dates since 2012:
Y = Y[which(dates > as.Date("2012-01-01")),];

Run the MCMC:
mcmc_output = fdlm(Y, tau,
 K = 3,
 nsims = 2500, burnin = 2500,
 mcmc_params = list("beta", "fk",
 "Yhat", "sigma_e"))
DYNAMIC FACTORS: FED

FED: Dynamic Factors

Dates

2012 2013 2014 2015 2016 2017

FED: Dynamic Factors

drk92@cornell.edu

Daniel R. Kowal
FACTOR LOADING CURVES: BOE

BOE: Factor Loading Curves

Maturity (years)
BOE: Dynamic Factors
1. Hierarchical framework for modeling a multivariate time series of functional data
 - Covariates, stochastic volatility, change points

2. Joint estimation of model parameters; “exact” inference

3. Efficient Gibbs sampling algorithm; package FDLM

4. Applications: finance/economics and neuroscience; astronomy
KFAS: Kalman Filter and Smoother for Exponential Family State Space Models.
R package version 1.2.6.

A Bayesian multivariate functional dynamic linear model.
Journal of the American Statistical Association.
(in press).