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MOTIVATION – BACKGROUND
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– Modeling the volatility dynamics of financial markets is key.
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MOTIVATION – BACKGROUND
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– E.g., we need to account for volatility clustering.
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MOTIVATION – GARCH

– GARCH-type models (Bollerslev, 1986):

𝑦"|𝐼"%& ∼ 𝐷(0, ℎ", 𝝃)
Conditional variance ℎ":

ℎ" ≡ 𝜔 + 𝛼𝑦"%&3 + 𝛽ℎ"%&

Shape parameters in 𝝃.

Nice but:
– Estimates of GARCH models can be biased by structural breaks in 

the volatility dynamics.
Implies poor risk predictions.
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MOTIVATION – BREAK
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– Simulation in which we have a break in the GARCH parameters.
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MOTIVATION – BREAK
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– Covariance stationary but unconditional variance increases.
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MOTIVATION – BREAK
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– Estimation assuming a single-regime (set of parameters).
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MOTIVATION – BREAK
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– Integrated GARCH is obtained.
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A SOLUTION

– Markov-switching GARCH (MSGARCH) models.

𝑦"|(𝑠" = 𝑘, 𝐼"%&) ∼ 𝐷(0, ℎ8,", 𝝃8)

Conditional on state 𝑠" = 𝑘, variance ℎ8," and distribution parameters 𝝃8.

– 𝐾 regimes with specific GARCH-type parameters (Haas et al. 2004):

ℎ&," ≡ 𝜔& + 𝛼&𝑦:%&3 + 𝛽&ℎ&,"%&
⋮

ℎ<," ≡ 𝜔< + 𝛼<𝑦:%&3 + 𝛽<ℎ<,"%&

– Discrete-state variable 𝑠" evolves according to a first-order Markov
chain with transition matrix 𝑷.
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MSGARCH

– Approach by Haas et al. (2004) has several attractive features:
– Computationally tractable.
– Interpretation of the parameters.

Persistence and past shocks can be different across regimes.

– Several papers (e.g., Marcucci 2005, Ardia 2008, Bauwens et al. 2010) 
have reported better forecasting performance of MSGARCH
compared to single-regime GARCH.

– Still, MSGARCH is more complicated and difficult to estimate.
We use the R package MSGARCH available on CRAN.
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RESEARCH QUESTIONS

1. Are MSGARCH models relevant in practice?
– Comparison with GARCH-type models.
– Large scale study (hundred of stocks, several indices, etc.).

2. Should we integrate parameter uncertainty in risk forecasts?
– ML vs. MCMC (Bayesian).

Predictive distribution of returns.
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OUR STUDY – DATA & MODELS

– Data (univariate):
– S&P 500 stocks (400).
– Major stock indices (11).
– Currencies (8).

– Models:
– Single-regime & 2-state MSGARCH models.
– GARCH & GJR (asymmetric GARCH).
– Normal & Student (and skew versions).
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OUR STUDY – ESTIMATION & FORECASTING

– Estimation:
– 1,500 ITS rolling windows of daily returns.
– ML & MCMC estimation.

– Forecasting:
– 2,000 OTS returns.
– One-day ahead performance of tail forecasts.
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(1) VALUE-AT-RISK TEST – SETUP

– We backtest the VaR using DQ test (Engle & Manganelli 2004).

– We report the percentage of rejections (at the 5% level) per asset class 
(we correct for false positive following Storey 2002 for stocks).
Low percentages are preferred.

– Test if MS outperforms SR.

– Test if MCMC outperforms ML.

– Get similar results with UC and CC tests (Christoffersen 1998).
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(1) VALUE-AT-RISK TEST – RESULTS
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Table with the frequencies of 
rejections (at the 5%) with false 
positive correction.
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(1) VALUE-AT-RISK TEST – RESULTS
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Table with the frequencies of 
rejections (at the 5%) with false 
positive correction.
– Focus on stocks first.
– VaR 1% and 5% levels.
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(1) VALUE-AT-RISK TEST – RESULTS
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Research questions:
– MS (significantly) better for 

MCMC

Note: 
Light gray indicates significant 
outperformance between MS and 
SR.
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(1) VALUE-AT-RISK TEST – RESULTS
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Research questions:
– MS (significantly) better for 

MCMC and ML.

Note: 
Light gray indicates significant 
outperformance between MS and 
SR.
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(1) VALUE-AT-RISK TEST – RESULTS
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Research questions:
– MS (significantly) better.
– MCMC (significantly) better.

Note:
Star indicates significant 
outperformance between MCMC 
and ML.
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(1) VALUE-AT-RISK TEST – RESULTS
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Research questions:
– MS (significantly) better.
– MCMC (significantly) better.

Note:
– GJR is preferred.
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(1) VALUE-AT-RISK TEST – RESULTS
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Research questions:
– MS (significantly) better.
– MCMC (significantly) better.

Note:
– GJR is preferred.
– Student is preferred.
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(1) VALUE-AT-RISK TEST – RESULTS

22

Research questions:
– MS (significantly) better.
– MCMC (significantly) better.

Note:
– GJR is preferred.
– Student is preferred.
– Skewness is preferred.
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(1) VALUE-AT-RISK TEST – RESULTS
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Research questions:
– MS (significantly) better.
– MCMC (significantly) better.

Note:
– GJR is preferred.
– Student is preferred.
– Skewness is preferred.
– SR skewed Student performs 

remarkably well. 
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(1) VALUE-AT-RISK TEST – RESULTS
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Research questions:
– Less clear (significant) 

conclusion for stock
indices and 
currencies.
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(2) LEFT-TAIL TEST – SETUP

– We perform a pairwise comparison of the forecasting performance of 
the left tail returns distribution for MS vs. SR.

– For each model and asset in a universe, we compute the Diebold-
Mariano (1995) statistics of the weighted CRPS (and QL) differentials 
between MS and SR models (Gneiting & Ranjan 2011).

– We then report the average value:
Negative value indicates outperformance of MS.
Light (dark) gray reports significant outperformance (at the 1% level) of 
MS (SR).

– Results are reported for MCMC only.
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(2) LEFT-TAIL TEST – RESULTS
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Table with average DM on the 
differentials.

Note:
Light (dark) gray reports significant 
outperformance (at the 1% level) of 
MS (SR).
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(2) LEFT-TAIL TEST – RESULTS
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First research question:
– MS (significantly) better.
– Especially true for stocks.

Note:
– GJR is preferred.
– Student is preferred.
– Skewness is preferred.
– SR skewed Student performs 

remarkably well. 
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(3) LEFT-TAIL TEST – SETUP

– We dig further into the results to determine what makes MS attractive 
compared to SR.

– We focus on the left tail and compare the weighted CRPS measure for 
different models specifications for MS against SR. 
Negative value indicates outperformance of MS.
Light (dark) gray reports significant outperformance of MS (SR).
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(3) LEFT-TAIL TEST – RESULTS
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– Table with averages (over assets) of a given MS model against another 
SR model. 



David Ardia

(3) LEFT-TAIL TEST – RESULTS
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– MS dominates SR with (skew) Normal.
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(3) LEFT-TAIL TEST – RESULTS
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– But MSGARCH with a (skew) Normal distribution is not able to jointly 
account for the switch in the parameters as well as for the excess of 
kurtosis exhibited from the data.

– MSGARCH with a (skew) Student is required.
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SUMMARY

– MS mechanism in GARCH models depends on the underlying asset 
class on which it is applied.
– For stock data, strong evidence in favor of MSGARCH.

This can be explained by the large (un)conditional kurtosis 
observed for the log–returns of stock data. 

– Not the case for stock indices and currencies.

– Accounting for the parameter uncertainty (i.e., integrating the 
parameter uncertainty into the predictive distribution) via MCMC is 
necessary for stock data.
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CURRENT FOCUS
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– Multi-step ahead forecasts:
Impact of mean-reversion speed of GARCH vs. MSGARCH.

– Regime-switches in volatility only:
Breaks in volatility dynamics vs. changes in conditional distributions.

– Additional data sets:
– Emerging markets.
– Commodities.

– 3-state MSGARCH:
Number of regimes and asset class?
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