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In the beginning...
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The Markowitz Problem

Given µ,Σ

minimize wTΣw− λµTw

Sample estimates:

Σ̂ = RTR/n µ̂ = RT1n/n

minimize wT(RTR/n)w− λwTRT1n/n
Simplify and factor:

wT(RTR/n)w− λwTRT1/n =⇒ wT(RTR/n)w− λwTRT1n/n
=⇒ wTRTRw− 2wTRT(1nλ/2) + (1nλ/2)T(1nλ/2)

=⇒ ∥(1nλ/2)− Rw∥22
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Linear Regression Connection

argmin
w∈Rp

∥(1nλ/2)− Rw∥22

=⇒ Ordinary Least Squares (OLS)

argmin
β∈Rp

∥y− Xβ∥22

We know a lot about OLS!
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Constrained Portfolio Optimization

Portfolio constraints: concentration, diversification, transaction cost
management, etc.

Example: invest in at most K shares

argmin
w∈Rp:∥w∥0≤K

∥(1nλ/2)− Rw∥22

NP-Hard…
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Best Subsets and the Lasso

“Statistical Perspective”:

argmin
w∈Rp:∥w∥0≤K

∥(1nλ/2)− Rw∥22 ⇔ argmin
β∈Rp:∥β∥0≤K

∥y− Xβ∥22

• Portfolio Optimization: Find the portfolio which has the best
risk/return trade-off using at most K assets

• Statistics: Find the statistical model which fits my data best
using at most K variables

Impossible to solve exactly for reasonable p

State of the art MIO [BKM16] solves p ≈ 1000 in hours

In statistics, the convex relaxation of this problem is known as the
Lasso [Tib96] and it has been hugely successful.

6



Best Subsets and the Lasso

“Statistical Perspective”:

argmin
w∈Rp:∥w∥0≤K

∥(1nλ/2)− Rw∥22 ⇔ argmin
β∈Rp:∥β∥0≤K

∥y− Xβ∥22

• Portfolio Optimization: Find the portfolio which has the best
risk/return trade-off using at most K assets

• Statistics: Find the statistical model which fits my data best
using at most K variables

Impossible to solve exactly for reasonable p

State of the art MIO [BKM16] solves p ≈ 1000 in hours

In statistics, the convex relaxation of this problem is known as the
Lasso [Tib96] and it has been hugely successful.

6



Best Subsets and the Lasso

“Statistical Perspective”:

argmin
w∈Rp:∥w∥0≤K

∥(1nλ/2)− Rw∥22 ⇔ argmin
β∈Rp:∥β∥0≤K

∥y− Xβ∥22

• Portfolio Optimization: Find the portfolio which has the best
risk/return trade-off using at most K assets

• Statistics: Find the statistical model which fits my data best
using at most K variables

Impossible to solve exactly for reasonable p

State of the art MIO [BKM16] solves p ≈ 1000 in hours

In statistics, the convex relaxation of this problem is known as the
Lasso [Tib96] and it has been hugely successful.

6



Best Subsets and the Lasso

“Statistical Perspective”:

argmin
w∈Rp:∥w∥0≤K

∥(1nλ/2)− Rw∥22 ⇔ argmin
β∈Rp:∥β∥0≤K

∥y− Xβ∥22

• Portfolio Optimization: Find the portfolio which has the best
risk/return trade-off using at most K assets

• Statistics: Find the statistical model which fits my data best
using at most K variables

Impossible to solve exactly for reasonable p

State of the art MIO [BKM16] solves p ≈ 1000 in hours

In statistics, the convex relaxation of this problem is known as the
Lasso [Tib96] and it has been hugely successful.

6



Best Subsets and the Lasso

“Statistical Perspective”:

argmin
w∈Rp:∥w∥0≤K

∥(1nλ/2)− Rw∥22 ⇔ argmin
β∈Rp:∥β∥0≤K

∥y− Xβ∥22

• Portfolio Optimization: Find the portfolio which has the best
risk/return trade-off using at most K assets

• Statistics: Find the statistical model which fits my data best
using at most K variables

Impossible to solve exactly for reasonable p

State of the art MIO [BKM16] solves p ≈ 1000 in hours

In statistics, the convex relaxation of this problem is known as the
Lasso [Tib96] and it has been hugely successful.

6



Sparsity

argmin
w∈Rp

∥∥∥∥∥∥∥(1nλ/2)︸ ︷︷ ︸
y∈Rn

− R︸︷︷︸
X∈Rn×p

w︸︷︷︸
β∈Rp

∥∥∥∥∥∥∥
2

2

+ γ∥w∥ℓ1

Tune λ to change risk-return trade-off and γ to change sparsity level
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Results

Problem first considered by [BDM+09]

(Figure from [BDM+09])
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Intuition

Why does this work?

• “Sharp corners” give sparsity [CRPW12]
• Lasso can be prediction consistent without being model
selection consistent [GR04, Cha13]

• Controls over-fitting (degrees of freedom) from search
[ZHT07, Tib15]
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Further Structure

Statisticians have developed many “Lasso-like” constraints which
enforce different structures:

Goal Relaxed Constraint Portfolio Analogue

Select at most K variables Lasso [Tib96] Invest in at most K assets
Select variables from at most G groups Group Lasso [YL06] Invest in at most G asset classes
Select variables from at most B overlapping groups Group Lasso with Overlap [JOV09] Trade against at most B brokers
Select variables with at least one in each of D groups Exclusive Lasso [ZJH10, CA15] Diversify over at least D asset classes

as well as highly-efficient methods for solving the corresponding
optimization problems (e.g., [FHT10]).

See [HTF09], [JWHT13], or [HTW15] for details.
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