Ratings and Asset Allocation: An Experimental Analysis¹

R/Finance Conference, 2017

Robert L. McDonald² Thomas Rietz³

May 19, 2017

¹We gratefully acknowledge funding support from TIAA-CREF ²Kellogg School, Northwestern University and NBER ³Henry B. Tippie College of Business, University of Iowa

Background

- Many financial decisions require difficult computations
 - Long-horizon financial decisions
 - The baseline portfolio selection model (e.g. Merton (1971)) has enormous informational and computational requirements
 - Thousands of stocks, bonds, options, mutual funds
 - Mutual fund theorems simplify the problem, but remain complicated with lifetime effects and individual-specific risks
 - Evaluation and comparisons of bonds
 - Credit risk
 - Term structure
 - Contractual characteristics
- What summaries, defaults, and presentation of information are helpful to investors?

Literature: Behavioral Aspects of Investment Behavior

Presentation effects

- Chen, Lookman, Schürhoff, and Seppi (2014) (split-rated bonds); Del Guercio and Tkac (2008) (chasing Morningstar stars); Massa, Simonov, and Stenkrona (2015) (style representation)
- Effects of financial knowledge
 - Bernheim, Garrett, and Maki (2001); Bernheim and Garrett (2003) and Lusardi and Mitchell (2007); Grinblatt, Keloharju, and Linnainmaa (2011)
- Cognitive limitations; difficulty forming portfolios (numerous)
- Investment choice defaults
 - Madrian and Shea (2001): default enrollment increases participation; participants adopt the default investments
 - Benartzi and Thaler (2001) and Huberman and Jiang (2006) on 1/n selections

Motivation: Categories are Ubiquitous

- We study categorized star ratings, such as Morningstar ratings
- Categories are groupings of related items
- The groupings may or may not have clear relevance for optimizing behavior

Motivation: Categories are Ubiquitous

- We study categorized star ratings, such as Morningstar ratings
- Categories are groupings of related items
- The groupings may or may not have clear relevance for optimizing behavior
- Credit ratings: AAA CDOs were (supposedly) different than AAA corporate bonds.
 - The ratings are analogous to our stars
 - Corporates vs CDOs analogous to our categories

Motivation: Categories are Ubiquitous

- We study categorized star ratings, such as Morningstar ratings
- Categories are groupings of related items
- The groupings may or may not have clear relevance for optimizing behavior
- Credit ratings: AAA CDOs were (supposedly) different than AAA corporate bonds.
 - The ratings are analogous to our stars
 - Corporates vs CDOs analogous to our categories
- Morningstar ratings:
 - Ratings are within categories (e.g.: "Conservative Allocation", "Moderate Allocation", "Mid-Cap Blend", "Mid-Cap Growth", "Small Value", "Small Blend", "Small Growth", "Specialty Communications", "Specialty Financial", "Specialty Health", "Specialty Natural Resources", ..., etc.)
 - How are investors affected by comparing stars across categories?

Premise underlying categorization

 The premise underlying categorized ratings is that investors can adequately choose between categories but need assistance to choose within categories

Premise underlying categorization

- The premise underlying categorized ratings is that investors can adequately choose between categories but need assistance to choose within categories
- This makes sense, but do star comparisons across categories confuse investors?

Morningstar Categories

Large Value Mid-Cap Blend Small Growth Specialty Natural Resources Conservative Allocation Specialty Precious Metals Muni Massachusetts Muni New York Int/Sh Target-Date 2000-2014 Foreign Large Value Foreign Small/Mid Growth Europe Stock Global Real Estate Intermediate Government Intermediate-Term Bond High Yield Bond Muni National Long Muni Single State Long

Large Blend Mid-Cap Growth Specialty Communications Specialty Real Estate Moderate Allocation Muni Single State Short Muni Minnesota Muni Ohio Target-Date 2015-2029 Foreign Large Blend World Stock Japan Stock Rear Market Short Government Short-Term Bond Multisector Bond Muni National Intermediate Single State Interm

Large Growth Small Value Specialty Financial Specialty Technology Convertibles Muni California Long Muni New Jersey Muni Pennsylvania Target-Date 2030 + Foreign Large Growth Diversified Emerging Markets Pacific/Asia (ex Japan) Stock Currency Inflation-Protected Bond Ultrashort Bond World Bond Muni National Short Enhanced Risk Measure

Mid-Cap Value Small Blend Specialty Health Specialty Utilities Long-Short Muni Muni California Int/Sh Muni New York Long Moderate Allocation World Allocation Foreign Small/Mid Value Latin America Stock Diversified Pacific/Asia Long Government Long-Term Bond Bank Loan Emerging Markets Bond High Yield Muni

Morningstar Fund Rankings

- All funds are put into a peer group based on investment style
- Funds in a peer group are rated on a curve: 10% 1 and 5 star; 22.5% 2 and 4 star; 35% 3 star.
 - No ratings in categories where funds are not directly comparable
- Rankings are determined by comparing certainty equivalent returns, computed using CRRA preferences with γ = 2 (Morningstar, 2009).
- Three problems:
 - The stars are eye-catching
 - Most investors probably do not understand them
 - Stars are not comparable across categories, but fund listings (e.g. in pension plans) simply report stars

This Paper

- Do ratings and categorized ratings (ratings within groups) affect decisions when they add no additional information?
- We find that categorized ratings affect decisions
- We also examine cross-sectional determinants of behavior
 - Much behavioral research is focused on average effects.
 - We are concerned with heterogeneity
 - More knowledgable subjects perform better, but they seem affected by categorization
- The ultimate goal is to understand what interventions might help improve real-world decision making.

Investment Alternatives

In each of 4 trials, subjects allocate \$12 across six investments:

Alternative:	Α	В	С	D	E	F
High Return:	130%	185%	125%	200%	225%	190%
Low Return:	30%	15%	-25%	-20%	-75%	-90%
Average Return:	80%	100%	50%	90%	75%	50%
Range of Returns:	100%	170%	150%	220%	300%	280%
Return/Risk Ratio:	0.8000	0.5882	0.3333	0.4091	0.2500	0.1786

Table 1: Investment alternatives in the experiment. This is an "uncategorized" display.

Investment Alternatives

In each of 4 trials, subjects allocate \$12 across six investments:

Alternative:	A	В	С	D	E	F
High Return:	130%	185%	125%	200%	225%	190%
Low Return:	30%	15%	-25%	-20%	-75%	-90%
Average Return:	80%	100%	50%	90%	75%	50%
Range of Returns:	100%	170%	150%	220%	300%	280%
Return/Risk Ratio:	0.8000	0.5882	0.3333	0.4091	0.2500	0.1786

Table 1: Investment alternatives in the experiment. This is an "uncategorized" display.

- No investment ("cash") is an unstated seventh investment.
- Investment returns are perfectly correlated in a stage
- The return/risk ratio is the expected return divided by the range (twice the standard deviation). For example, for A:

$$\frac{0.5 \times (130 + 30)}{130 - 30} = 0.80$$

Display with Categories

	Category	Category I				Category II			
Alternative:	A	B	С		D	E	F		
High Return:	130%	185%	125%		200%	225%	190%		
Low Return:	30%	15%	-25%		-20%	-75%	-90%		
Average Return:	80%	100%	50%		90%	75%	50%		
Range of Re-	100%	170%	150%		220%	300%	280%		
turns:									
Return/Risk Ra-	0.8000	0.5882	0.3333		0.4091	0.2500	0.1786		
tio:									

Table 2: Investment alternatives in the experiment. This is a "categorized" display.

- Note that in both presentations, subjects are given the mean and standard deviation, and the ratio of the two.
- Categories are low risk (Category 1) and high risk (Category 2)

Investment Characteristics

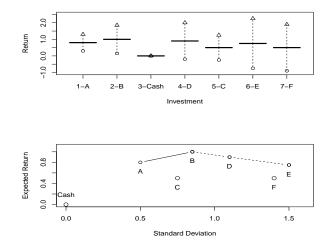


Figure 1: Top: Expected returns and standard deviations of investments. Bottom: Investments ordered by minimum return. **Subjects do not see these figures.**

Optimal Investment Decisions

- C, F, and cash are dominated
- Risk-averse subjects should select some combination of A and B
 - A risk-averse subject prefers B to D and E.
- Subjects behaving risk-neutrally should invest in B
 - Rabin (2000) notes that subjects in most experiments should rationally be risk-neutral
- Diversification is worthless: In a given stage, all investments earn the high or low return

The Primary Treatment

• We assign stars using the return-risk ratio within categories:

Alternative:		A	В	С	D	E	F
Uncategorized Ranking:		***	***	**	**	*	*
Categorized Ranking:		***	**	*	***	**	*

Table 3: Rankings of Investment Alternatives

- Half of subjects consistently see uncategorized displays, half see categorized displays
- Important: categorization induces rating shifts:
 - B and C are demoted
 - D and E are promoted
- The goal is to see how rankings affect selections

- In all stages, subjects were shown investment characteristics and asked to allocate investments across the six gambles.
- Alternatives are reordered and relabeled across stages

- In all stages, subjects were shown investment characteristics and asked to allocate investments across the six gambles.
- Alternatives are reordered and relabeled across stages

Trial I: Basic information display

- In all stages, subjects were shown investment characteristics and asked to allocate investments across the six gambles.
- Alternatives are reordered and relabeled across stages
 - Trial I: Basic information display
 - Trial II: Basic information display plus star ratings. Half were told how the ranking worked, half were not

- In all stages, subjects were shown investment characteristics and asked to allocate investments across the six gambles.
- Alternatives are reordered and relabeled across stages
 - Trial I: Basic information display
 - Trial II: Basic information display plus star ratings. Half were told how the ranking worked, half were not
 - Trial III: Subjects ranked the alternatives themselves.
 - Half were asked to rank alternatives according to the return/risk ratio
 - The other half were not told how to rank the alternatives.

- In all stages, subjects were shown investment characteristics and asked to allocate investments across the six gambles.
- Alternatives are reordered and relabeled across stages
 - Trial I: Basic information display
 - Trial II: Basic information display plus star ratings. Half were told how the ranking worked, half were not
 - Trial III: Subjects ranked the alternatives themselves.
 - Half were asked to rank alternatives according to the return/risk ratio
 - The other half were not told how to rank the alternatives.

Trial IV: Repeat of Trial I: Basic information, no stars

Treatments

There are 8 treatments $(2 \times 2 \times 2)$ with 33 or 34 subjects in each treatment

- Categorization (main effect): Whether the investment alternatives are categorized or not.
- Explicit Ranking Rule: Whether the ranking method used in Trials 2 and 3 is explicitly stated.
- Order: Whether subjects participated in Trial II then Trial III or in Trial III then Trial II.

Treatments

There are 8 treatments $(2 \times 2 \times 2)$ with 33 or 34 subjects in each treatment

- Categorization (main effect): Whether the investment alternatives are categorized or not.
- Explicit Ranking Rule: Whether the ranking method used in Trials 2 and 3 is explicitly stated.
- Order: Whether subjects participated in Trial II then Trial III or in Trial III then Trial II.

Treatments are not mixed: displays are always categorized, or not; subjects are always told the ranking rule, or not.

Experiment Description

- 266 subjects (U lowa undergrad and MBA), between August and November 2010 and April and June 2012.
- On-line, any location
- Overall:
 - 1. General instructions
 - 2. Subjects choose whether to allocate \$1 to a fair bet (\$2 or 0)
 - This is to assess risk aversion of the subjects
 - 3. The 4 trials
 - 4. Knowledge quiz
 - 5. Demographic survey
 - 6. Payoffs determined
 - One round and the initial bet payoff are selected randomly; subject gets \$5 participation fee plus the payoff.
- All who got to the stage 0 bet completed the experiment
- Average time to complete each stage (not counting instructions) less than 2.5 minutes

Example of Subject Payment

- \$5 participation fee
- Initial bet: \$1 if forego, 0 or \$2 otherwise
- Payoff on the randomly-selected stage.
- Example:
 - Subject does not make initial bet
 - Trial III is randomly selected at the end of the experiment; subject has invested \$6 in B and \$6 unallocated and the return is high
 - For the staged portion, subject then receives

$$5 + 1 + 6 \times (1 + 1.85) =$$
\$23.10

Example of Subject Payment

- \$5 participation fee
- Initial bet: \$1 if forego, 0 or \$2 otherwise
- Payoff on the randomly-selected stage.
- Example:
 - Subject does not make initial bet
 - Trial III is randomly selected at the end of the experiment; subject has invested \$6 in B and \$6 unallocated and the return is high
 - For the staged portion, subject then receives $5 + 1 + 6 \times (1 + 1.85) = 23.10
- Maximum payoff occurs if subject takes the initial bet and wins, and plunges in asset E and wins:

$$5+2+12 \times (1+2.25) = 46$$

Design

Note that

- there is no interaction of participants and no market
- there is no history of outcomes,
- there is no learning,
- there is little or no computation,
- there is no need to understand correlation

Design

- Note that
 - there is no interaction of participants and no market
 - there is no history of outcomes,
 - there is no learning,
 - there is little or no computation,
 - there is no need to understand correlation
- Subjects at all times have complete information about investments.

 \Rightarrow

Treatments should not affect investment decisions.

1. Do participants behave "reasonably"

- 1. Do participants behave "reasonably"
 - Yes

- 1. Do participants behave "reasonably"
 - Yes
- 2. Are choices affected by treatments and by how much?

- 1. Do participants behave "reasonably"
 - Yes
- 2. Are choices affected by treatments and by how much?
 - Yes, choices are affected by treatments.

- 1. Do participants behave "reasonably"
 - Yes
- 2. Are choices affected by treatments and by how much?
 - Yes, choices are affected by treatments.
- 3. Do knowledge and experience matter?

- 1. Do participants behave "reasonably"
 - Yes
- 2. Are choices affected by treatments and by how much?
 - Yes, choices are affected by treatments.
- 3. Do knowledge and experience matter?
 - We do not find evidence that knowledge and experience counteract the treatment effect.

Summary of Results

- Knowledge is associated with making better untreated decisions
- Categorization harms performance
 - Investment in B and C, and to a lesser extent, D and E, are sensitive to star rankings
- Behavior is heterogeneous
 - Those taking the initial bet are risk-seeking in the experiment
 - Experienced investors perform better

Results for Trial 1

- Subjects performed reasonably well in complicated setting, investing most in A and B
- Smallest investments in C, F, and Cash
- Median investor invests \$10 in two or fewer assets
- 11 (of 266) subjects at some point invest in 7 assets

Investment in Trial 1

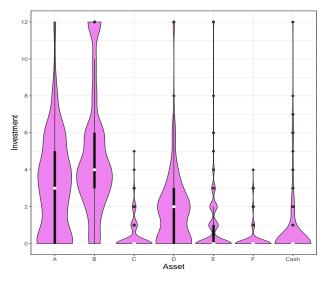


Figure 2: Investment levels in Trial 1.

Diversification?

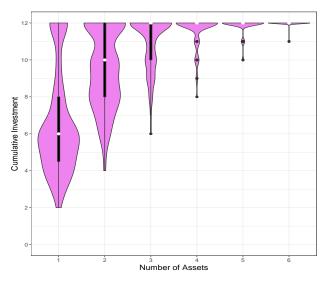


Figure 3: Cumulative Investment levels in Trial 1

What Should We Find?

- A and F should be unaffected by treatment
- Those in categorized treatment should invest less in B and C, and more in D and E, in Trial 2 and possibly 3.
- All of this is evident in examining the difference between investments in the categorized and non-categorized treatments
- Trial 4 tests whether there are holdover effects from the earlier trials

Univariate Analysis: Categories Within Stages

	А	В	С	D	E	F	Cash
		Panel A:	Average Inv	estment in	Trial 1		
Mean (\$)	3.125	4.798	0.388	1.817	0.951	0.228	0.692
Std. Dev. (\$)	2.648	3.336	0.797	2.078	1.759	0.666	1.818
	Panel B	: Changes fr	om Trial 1 i	n Non-categ	orized Treat	ment	
Trial 2	0.225	0.310	0.093	-0.256	-0.450***	-0.016	0.093
Trial 3	0.426	-0.248	0.062	-0.302	-0.450***	-0.078	0.589
Trial 4	0.310	0.341	-0.031	-0.256	-0.372**	0.000	0.008
	Panel	C: Changes	from Trial	1 in Categor	ized Treatme	ent	
Trial 2	0.418	-0.694***	-0.075	0.425**	-0.090	0.142	-0.127
Trial 3	0.448	-0.985***	-0.045	0.157	-0.321**	0.104	0.642
Trial 4	0.373	-0.425	-0.164**	0.119	0.037	0.104	-0.045
Panel D: Di	fference B	etween Cha	nges in Cat	egorized an	d Non-Categ	orized Trea	atments
Trial 2	0.193	-1.004***	-0.168**	0.681***	0.360***	0.157	-0.220
Trial 3	0.021	-0.737**	-0.107*	0.459**	0.129	0.182	0.053
Trial 4	0.063	-0.766**	-0.133*	0.375	0.409**	0.104	-0.053

The main results are in Panel D

Cash holdings

- Cash holdings are small *except* in Trial 3, when the rating rule is not given
- Subjects may be uncertain how to proceed
- Is this a drawback of disclosure and seeking active subject participation?

Cash Holdings Across Trials

Table 4: Cash holdings in each trial, split by whether subjects are told the rating rule in the self-rated trial.

	Trial									
	Ratir	ng Rule	Not C	aiven	Rating Rule Given					
Cash holding	1	2	3	4	1	2	3	4		
0	108	104	96	100	106	108	102	110		
1	2	9	6	13	8	10	11	6		
2	10	5	7	11	8	4	8	3		
3	4	0	4	4	1	3	3	7		
4	2	10	2	0	2	1	2	0		
5	2	1	0	3	0	2	0	0		
6	4	2	4	1	3	1	1	1		
7	0	1	0	0	3	1	0	2		
8	0	0	0	0	1	1	2	1		
10	0	1	0	0	0	0	0	0		
12	1	0	14	1	1	2	4	3		

Note Trial 3, no rating rule.

Multivariate Regression

- Censored regressions explaining investment levels in each asset,
- Regressions explaining the subject's average Sharpe ratio
- Explanatory variables include
 - knowledge score
 - gender dummy
 - stage dummy
 - stage interacted with a dummy for categorization
 - stage interacted with a dummy for the ranking rule being supplied
 - stage interacted with a dummy for the ordering (= 1 if self-ranking is first)
- The constant measures behavior in Stage I, uncategorized, male, with mean knowledge score
- Interactions of treatment with knowledge score were generally insignificant

Trial 1

- Experienced and knowledgeable subjects invest more in B and less in C, E, and F
- Those accepting the initial risky bet invest less in B and more in E and F
- Females invest more in C

Allocations in Trial 1

	Α	В	С	D	F	F
		5		-	-	•
Intercept	2.42***	5.41***	-1.98***	1.17***	-1.00**	-3.99***
	(0.38)	(0.43)	(0.38)	(0.33)	(0.46)	(0.72)
T1*Cat	0.21	0.14	-0.20	-0.30	-0.80*	-1.18*
	(0.45)	(0.49)	(0.39)	(0.40)	(0.46)	(0.63)
Female	0.38	-0.13	0.72**	-0.20	-0.07	0.58
	(0.38)	(0.43)	(0.34)	(0.32)	(0.41)	(0.54)
Experience	-0.25	2.41*	-0.22	-0.83	-2.89**	-2.22*
	(1.19)	(1.34)	(0.90)	(0.95)	(1.32)	(1.29)
Knowledge	-0.01	0.53***	-0.22**	-0.13	-0.22*	-0.29*
0	(0.12)	(0.14)	(0.10)	(0.10)	(0.12)	(0.15)
RiskBet	-0.19	-1.29***	0.23	0.43	1.22***	1.11**
	(0.40)	(0.44)	(0.35)	(0.33)	(0.46)	(0.52)
Num. obs.	1052	1052	1052	1052	1052	1052
Trial 1:						
Left-censored	67	21	199	91	157	228
Uncensored	192	213	64	168	103	35
Right-censored	4	29	0	4	3	0
All trials:						
Left-censored	247	135	820	394	697	906
Uncensored	771	800	232	648	349	145
Right-censored	34	117	0	10	6	1

*** p < 0.01, ** p < 0.05, * p < 0.1

Trial 2: Stars are displayed

- Categorized investors reduce investment in B and C.
- Small effects from knowledge and experience

Allocations in Trial 2

	Α	В	С	D	Е	F
Intercept	2.42***	5.41***	-1.98***	1.17***	-1.00**	-3.99***
	(0.38)	(0.43)	(0.38)	(0.33)	(0.46)	(0.72)
T2	0.22	0.36	0.52*	-0.49	-1.47***	0.06
	(0.35)	(0.38)	(0.31)	(0.34)	(0.49)	(0.45)
T2*Knowledge	-0.22	-0.03	0.09	-0.08	-0.37	0.21
	(0.18)	(0.24)	(0.16)	(0.17)	(0.28)	(0.21)
T2*Cat	0.61	-1.08**	-1.20***	0.62	0.32	-0.47
	(0.46)	(0.55)	(0.44)	(0.39)	(0.48)	(0.63)
T2*Rule	0.05	-0.05	-0.65	0.08	0.44	-0.44
	(0.46)	(0.54)	(0.45)	(0.39)	(0.50)	(0.64)
T2*Cat*Knowledge	0.45*	-0.09	-0.33	-0.32	0.40	-0.29
	(0.27)	(0.31)	(0.25)	(0.22)	(0.30)	(0.34)
T2*Rule*Knowledge	0.04	-0.08	-0.43*	0.13	0.54*	-0.44
	(0.27)	(0.31)	(0.26)	(0.22)	(0.31)	(0.35)
Num. Obs. (trial)	263	263	263	263	263	263
Left-censored	56	30	205	98	176	225
Uncensored	200	202	58	163	86	38
Right-censored	7	31	0	2	1	0

*** p < 0.01, ** p < 0.05, * p < 0.1

Self-Ranking of Assets

Table 5: Fraction of subjects assigning a given rating in the self-ranked trial, by treatment. The ratings shown to subjects in the Ranked trial are in bold.

	A: Categorized Treatment									
	Rar	ık rule g	iven	Rank rule not given						
Asset	1	2	3	1	2	3				
А	0.12	0.10	0.78	0.12	0.48	0.40				
В	0.03	0.87	0.10	0.04	0.48	0.48				
С	0.85	0.03	0.12	0.84	0.04	0.12				
D	0.13	0.03	0.84	0.07	0.03	0.90				
E	0.03	0.94	0.03	0.04	0.94	0.01				
F	0.84	0.03	0.13	0.88	0.03	0.09				

B: Non-categorized Treatment									
	Ran	ık rule g	iven	Rank	Rank rule not given				
Asset	1	2	3	1	2	3			
Α	0.05	0.03	0.92	0.06	0.14	0.80			
В	0.05	0.02	0.94	0.02	0.06	0.92			
С	0.08	0.89	0.03	0.32	0.65	0.03			
D	0.03	0.95	0.02	0.05	0.82	0.14			
E	0.86	0.11	0.03	0.65	0.27	0.08			
F	0.94	0.00	0.06	0.91	0.06	0.03			

Trial 3: Self-Ranking

- Subjects rank assets in accord with the return to risk ratio, especially when this is explained to them
- Subjects invest more in assets they rank more highly
 - One star deviation from the uncategorized value is worth about \$2 in investment
- What happens when subjects are forced to downgrade an asset due to categorization?
 - B is theoretically 3 stars
 - If uncategorized, the subject invests less when assigning a lower rating
 - If categorized and the subject assigns a lower rating, there is no effect on investment (T3*SelfRank*Cat offsets T3*Cat)
 - The forced ranking does not change investment

Allocations in Trial 3

	А	В	С	D	E	F
Intercept	2.42***	5.41***	-1.98***	1.17***	-1.00**	-3.99***
	(0.38)	(0.43)	(0.38)	(0.33)	(0.46)	(0.72)
Т3	0.54	-0.26	0.65	-0.56	-2.65***	-0.93
	(0.51)	(0.52)	(0.43)	(0.41)	(0.77)	(0.65)
T3*SelfRank	2.06***	4.31**	1.57**	2.36*	2.32***	1.25
	(0.75)	(1.76)	(0.79)	(1.24)	(0.78)	(1.33)
T3*Cat	1.60*	-0.65	0.01	-0.35	2.34*	-1.48
	(0.86)	(1.11)	(0.63)	(0.79)	(1.21)	(1.18)
T3*Rule	0.59	0.06	-0.43	-0.06	1.63**	0.88
	(0.70)	(0.73)	(0.54)	(0.53)	(0.82)	(0.86)
T3*Cat*Rule	-0.82	-1.36	-0.76	2.04**	-3.52	0.82
	(1.15)	(1.80)	(0.86)	(0.93)	(2.25)	(1.54)
T3*SelfRank*Cat	1.03	-3.64*	0.66	-1.97	-3.89***	2.48*
	(1.14)	(2.02)	(0.97)	(1.43)	(1.38)	(1.40)
T3*SelfRank*Rule	-0.98	-3.02	-1.76	-0.03	-2.69**	-1.37
	(0.92)	(2.04)	(1.16)	(2.75)	(1.13)	(1.71)
T3*SelfRank*Cat*Rule	-1.06	1.36	-0.01	-1.60	4.85**	-13.42*
	(1.34)	(2.58)	(1.36)	(2.86)	(2.40)	(2.11)
Num. Obs. (trial)	263	263	263	263	263	263
Left-censored	60	49	203	101	187	228
Uncensored	192	191	60	160	75	35
Right-censored	11	23	0	2	1	0

*** p < 0.01, ** p < 0.05, * p < 0.1

Allocations in Trial 4

	А	В	С	D	E	F
Intercept	2.42***	5.41***	-1.98***	1.17***	-1.00**	-3.99***
	(0.38)	(0.43)	(0.38)	(0.33)	(0.46)	(0.72)
T4	0.36	0.36	-0.11	-0.46	-1.10***	-0.07
	(0.33)	(0.38)	(0.28)	(0.29)	(0.40)	(0.36)
T4*Cat	0.34	-0.86	-0.94**	0.23	0.27	-0.54
	(0.51)	(0.55)	(0.42)	(0.40)	(0.48)	(0.64)
Num. Obs. (trial)	263	263	263	263	263	263
Left-censored	64	35	213	104	177	225
Uncensored	187	194	50	157	85	37
Right-censored	12	34	0	2	1	1

 $^{***}p < 0.01, \, ^{**}p < 0.05, \, ^{*}p < 0.1$

University of Iowa Faculty and Staff

- We repeated the experiment for 610 University of Iowa faculty and staff
- Goal is to see if experimental results predict real world behavior
- Time series on investment choices
- Detailed HR data

Is the Experiment Replicable?

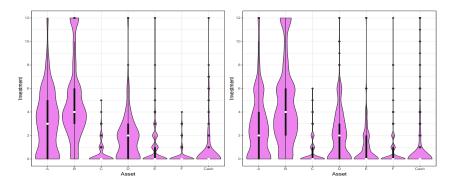


Figure 4: Investment levels in Trial 1: left, student experiment (n=266), right, faculty/staff (n=610)

Diversification



Figure 5: Cumulative Investment levels in Trial 1: left, student experiment (n=266), right, faculty/staff (n=610)

Conclusion

- Categorization affects investment decisions
- Financial knowledge and gender matter
- Detailed explanations do not undo the effects of categorization
- Treatments affect everyone
- Caution warranted in designing investment aids
 - Should different ranking systems be used for different categories of assets?
- We need to better understand the interaction of knowledge and treatments
 - Knowledgable investors perform better, but there is not strong evidence that they are less affected by treatments

Analysis in this paper was duplicated in Stata and R

Analysis in this paper was duplicated in Stata and R

Both base graphics and ggplot are great

Analysis in this paper was duplicated in Stata and R

- Both base graphics and ggplot are great
- Texreg is great

Analysis in this paper was duplicated in Stata and R

- Both base graphics and ggplot are great
- Texreg is great
- Computing clustered, robust standard errors in panel settings is cumbersome and inconsistent
 - I wrote a function to do this with censReg
 - Great opportunity for someone to rethink panel econometrics in R and write a package

Bibliography

- Benartzi, S., and R. H. Thaler, 2001, "Naive Diversification Strategies in Defined Contribution Saving Plans," The American Economic Review, 91(1), pp. 79–98.
- Bernheim, B. D., and D. M. Garrett, 2003, "The Effects of Financial Education in the Workplace: Evidence from a Survey of Households," Journal of Public Economics, 87(7-8), 1487–1519.
- Bernheim, B. D., D. M. Garrett, and D. M. Maki, 2001, "Education and Saving: The Long-term Effects of High School Financial Curriculum Mandates," Journal of Public Economics, 80(3), 435–465.
- Chen, Z., A. A. Lookman, N. Schürhoff, and D. J. Seppi, 2014, "Rating-Based Investment Practices and Bond Market Segmentation," raps, 4(2), 163–205.
- Del Guercio, D., and P. A. Tkac, 2008, "The Effect of Morningstar Ratings on Mutual Fund Flow," Journal of Financial and Quantitative Analysis, 43(4), 907–936.
- Grinblatt, M., M. Keloharju, and J. Linnainmaa, 2011, "IQ and Stock Market Participation," Journal of Finance, 66(6), 2121–2164.
- Huberman, G., and W. Jiang, 2006, "Offering versus Choice in 401(k) Plans: Equity Exposure and Number of Funds," Journal of Finance, 61(2), 763–801.
- Lusardi, A., and O. S. Mitchell, 2007, "Baby Boomer retirement security: The roles of planning, financial literacy, and housing wealth," Journal of Monetary Economics, 54(1), 205–224.
- Madrian, B. C., and D. F. Shea, 2001, "The Power of Suggestion: Inertia in 401(k) Participation and Savings Behavior," Quarterly Journal of Economics, 116(4), 1149–1187.
- Massa, M., A. Simonov, and A. Stenkrona, 2015, "Style Representation and Portfolio Choice," Journal of Futures Markets, 23, 1–25.
- Morningstar, 2009, "The Morningstar Rating Methodology," working paper, Morningstar.
- Rabin, M., 2000, "Risk Aversion and Expected-Utility Theory: A Calibration Theorem," Econometrica, 68(5), 1281–1292.