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Big	Picture	

§  Financials	are	oIen	delayed	indicators	of	corporate	quality	

§  Internal	discussion	(e.g.,	emails)	may	be	used	as	an	early	warning	system		

§  An	 automated	 plaRorm	 that	 parses	 emails	 and	 produces	 summary	
sta+s+cs	would	be	highly	valuable,	since…	

–  It	 can	 analyze	 vast	 quan++es	 of	 textual	 not	 amenable	 to	 human	
processing	

–  It	does	not	require	revela+on	of	 individual	email	content	explicitly	to	
monitors/regulators	
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Our	Purpose	

§  Our	purpose	 is	 to	explore	 the	predic+ve	power	of	 informa+on	conveyed	
by	employee	emails	

§  Specifically,	we	are	interested	in:	

§  The	sen+ment	conveyed	by	email	content	

§  The	informa+on	conveyed	by	structural	characteris+cs,	such	as	email	volume	or	length	

§  Other	non-verbal	indicators	of	poten+al	trouble	(e.g.,	shiIing	email	network	paYerns)	
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Preview	of	Results	

§  We	 find	 that	 the	 net	 sen+ment	 conveyed	 by	 Enron	 employee	 email	
content	is	a	significant	predictor	of	stock-return	performance	

§  Interes+ngly,	 email	 length	was	 a	 stronger	 predictor	 of	 subsequent	 price	
declines	than	the	net	sen+ment	conveyed	by	the	message	body	itself.	

§  We	also	iden+fy	other	poten+al	indicators/predictors	of	escala+ng	risk	or	
malfeasance.	
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Data	
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The	Enron	Email	Corpus	

S. Kim / SCU 2017 Data Concluding Remarks Motivation Analyses 



The	Enron	Email	Corpus	

§  Ini+al	Sample:		
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The	Enron	Email	Corpus	
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from	affected	employees.	
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The	Enron	Email	Corpus	

§  Ini+al	Sample:		
–  Approximately	500,000	emails		

–  January	2000	through	December	2001	

–  First	 made	 publicly	 available	 by	 the	 Federal	 Energy	 Regulatory	 Commission	 (FERC)	
during	its	inves+ga+on	of	Enron		

–  Subsequently	culled	and	distributed	by	the	Carnegie	Mellon	CALO	project	

§  Caveats	/	Redac+ons	
–  The	Enron	corpus	has	been	scrubbed	over	+me	for	legal	reasons	and	to	honor	requests	

from	affected	employees.	

–  Ex(1):	user	“fastow-a”	is	notably	missing	

–  Ex(2):	 Email	 chaYer	 surrounding	 Mr.	 Skilling’s	 sudden	 resigna+on	 on	 8/14/2001	 has	
been	expunged.	

–  Overall,	details	regarding	exclusion	criteria	have	not	been	made	public,	and	our	analyses	
should	be	viewed	as	exploratory	and	prescrip+ve	
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Curing	the	Data	

§  We	focus	on	“sent”	emails	(rather	than	all	emails)	in	order	to…	
–  Analyze	content	specifically	wriYen	by	Enron	employees		

–  Avoid	processing	the	same	content	more	than	once	

–  i.e.,	if	user	“lay-k”	sends	an	email	to	“skilling-j”	

§  Other	filters	applied	to	remove	noisy	(junk)	mail:		
–  Emails	greater	than	3,000	characters	in	length	

–  Emails	sent	to	more	than	20	recipients	
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Our	Final	Sample	

§  Overall,	we	obtain…	
–  The	Enron	email	corpus	from	the	Carnegie	Mellon	CS	site	

–  Stock	price	and	stock	return	informa+on	from	CRSP	

–  News	ar+cles	from	Fac+va	PR	Newswire	

–  Sen+ment	word	dic+onaries	from	the	Harvard	Inquirer	and	the	Loughran	and	McDonald	
sen+ment	word	lists	

§  Final	Sample:		
–  144	dis+nct	employees	

–  113,266	sent	emails	

–  January	2000	through	December	2001	
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Enron	Code	Pipeline	
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S1.Rmd		
(read	in	all	emails,	
preprocess)	

S2.Rmd		
(process	and	parse	
all	emails)	

Mails2.RData	
Dataframe	with	
header,	message	
body,	date,	from,	
to,	cc,	nchar,	
year,	month,	
week.	

Mails1.RData	
(1.3GB)	
>	½	million	
emails	
	

S3.Rmd		
Resolve	mul+ple	user	accounts;	
summary	stats;	de-duplica+on;	
plots	over	+me;	mood	scoring	
(week	x	user);	calculate	returns	
from	stock	data;	regressions	of	
sen+ment	and	returns;	
wordclouds;	email	networks.	

ENE_daily.csv	
(stock	data)	

MoodScoredDF.RData	
(weekly	sen+ment	
score	and	returns)	

Mails3.RData	
(all	emails	data	
and	returns)	

S3_2.Rmd		
(network	analysis)	

Network	output	
(adjacency	
matrices,	stats,	
degree	
distribu+on)	

WeeklyReturn.csv	
(returns)	
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S4.Rmd		
(list	of	1000	most	
used	words	over	
+me)	

Mails3.RData	
(all	emails	data	
and	returns)	

TDM.RData	
(term	document	matrix:	76518	
words	x	weeks;	1353	negwords,	288	
poswords,	206	uncwords,	105	
weeks.)	

WeeklyReturn.csv	
(returns)	

MoodScoredDF.RData	
(weekly	sen+ment	
score	and	returns)	

ui.R,	server.R		
(Shiny	app	to	show	
word	play	over	
+me)	

S5.Rmd		
(topic	analysis)	

FacEva_Extract.Rmd		
(Extract	news	ar+cles	
from	Fac+va)	 FacEva	

FacEva_Analysis.Rmd		
(Process	data	to	data	
frame	and	do	analysis)	

MoodScoredNews.RData	
(weekly	sen+ment	score;	
POS	tagging)	

TDMNews.RData	
(Weekly	news)	
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Analyses	
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Table	1.	Summary	Sta+s+cs	of	Sent	Mail	

The	average	email	is	362	characters	in	
length,	with	a	median	of	163	characters…	
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Table	1.	Summary	Sta+s+cs	of	Sent	Mail	

…	with	an	average	of	1.77	recipients	per	
sent	mail.	
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Table	1.	Summary	Sta+s+cs	of	Sent	Mail	

Many	emails	(close	to	11%)	are	simply	
forwarded	without	added	text.	
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Figure	1.	Average	Email	Length	over	Time	
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Figure	1.	Average	Email	Length	over	Time	

Year	2000:	

Year	2001:	
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Figure	1.	Average	Email	Length	over	Time	

Year	2000:	

Year	2001:	

Ini+ally,	average	email	length	is	fairly	stable,	
straddling	roughly	400	characters	per	email.	
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Ini+ally,	average	email	length	is	fairly	stable,	
straddling	roughly	400	characters	per	email.	
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Figure	1.	Average	Email	Length	over	Time	

Year	2000:	

Year	2001:	

Marked	decline	in	average	length	as	we	
approach	Enron’s	demise	(approx.	50%).	
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Figure	2.	Email	Sen+ment	and	Disagreement	over	Time	

Net	SenEment:	

Disagreement:	

𝑃𝑜𝑠−𝑁𝑒𝑔/
𝑃𝑜𝑠+𝑁𝑒𝑔  

1− |𝑃𝑜𝑠−𝑁𝑒𝑔|/
𝑃𝑜𝑠+𝑁𝑒𝑔  

S. Kim / SCU 2017 Data Concluding Remarks Motivation Analyses 



Figure	2.	Email	Sen+ment	and	Disagreement	over	Time	

Net	SenEment:	

Disagreement:	

𝑃𝑜𝑠−𝑁𝑒𝑔/
𝑃𝑜𝑠+𝑁𝑒𝑔  

1− |𝑃𝑜𝑠−𝑁𝑒𝑔|/
𝑃𝑜𝑠+𝑁𝑒𝑔  

Based	on	context-dependent	sen+ment	
dic+onaries	for	word	classifica+on	
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Figure	3.	Fac+va	News	Coverage	over	Time	
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Figure	3.	Fac+va	News	Coverage	over	Time	

Spike	in	number	of	ar+cles	as	we	
approach	Enron’s	demise.	
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Figure	4.	Fac+va	News	Sen+ment	over	Time	
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Figure	4.	Fac+va	News	Sen+ment	over	Time	

Net	sen+ment	from	body	

Net	sen+ment	from	header	
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Figure	5.	Stock	Returns	and	Net	Sen+ment	over	Time	

Net	sen+ment	across	Enron		
employee	emails	over	+me	

Moving	average	stock	returns	
for	Enron	over	+me	
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Figure	6.	Stock	Prices	and	Net	Sen+ment	over	Time	

Net	sen+ment	across	Enron		
employee	emails	over	+me	

Moving	average	stock	price	for	
Enron	over	+me	

S. Kim / SCU 2017 Data Concluding Remarks Motivation Analyses 



Figure	7.	Stock	Returns	and	Email	Length	over	Time	

Moving	average	stock	returns	
for	Enron	over	+me	

Moving	average	email	length	
across	Enron		employee	emails	
over	+me	
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Figure	8.	Stock	Prices	and	Email	Length	over	Time	

Moving	average	stock	price	for	
Enron	over	+me	

Moving	average	email	length	
across	Enron		employee	emails	
over	+me	
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Figure	8.	Stock	Prices	and	Email	Length	over	Time	

Moving	average	stock	price	for	
Enron	over	+me	

Moving	average	email	length	
across	Enron		employee	emails	
over	+me	

Perhaps,	as	risk/malfeasance	escalates,	emails	become	
shorter,	as	employees	are	less	likely	to	include	details	
in	message	sent	via	the	corporate	server	
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Table	2.	Email	Content	and	Stock	Returns	

Dependent	Variable	=	Stock	Returnst	
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Table	2.	Email	Content	and	Stock	Returns	

Dependent	Variable	=	Stock	Returnst	

One	stdev	(i.e.,	0.019)	decrease	in	Net	Sen+ment	is	
associated	with	a	4.5%	decline	in	stock	returns…	
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Table	2.	Email	Content	and	Stock	Returns	

Dependent	Variable	=	Stock	Returnst	 …	but	no	longer	significant	when	we	control	
for	email	length.	
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Table	2.	Email	Content	and	Stock	Returns	over	Time	

Dependent	Variable	=	Stock	Returnst	

Overall,	20-character	decline	in	moving	average	email	
length	is	associated	with	a	1.17%	decline	in	stock	returns.	
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Table	3.	Email	Content	versus	Fac+va	News	Content	

Dependent	Variable	=	Stock	Returnst	
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Table	3.	Email	Content	versus	Fac+va	News	Content	

Dependent	Variable	=	Stock	Returnst	

Email	content	contains	more	informa+on	than	
news-header	content….	
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Table	3.	Email	Content	versus	Fac+va	News	Content	

Dependent	Variable	=	Stock	Returnst	

….	But	neither	is	significant	when	accoun+ng	
for	email	length.	
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Table	3.	Email	Content	versus	Fac+va	News	Content	

Dependent	Variable	=	Stock	Returnst	
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Table	3.	Email	Content	versus	Fac+va	News	Content	

Dependent	Variable	=	Stock	Returnst	

On	the	other	hand,	email	content	contains	less	
informa+on	than	content	from	the	news	
body…	
(could	this	be	due	to	redac+ons	on	the	Enron	
email	corpus?)	
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Table	3.	Email	Content	versus	Fac+va	News	Content	

Dependent	Variable	=	Stock	Returnst	

….	But,	again,	neither	is	significant	when	
accoun+ng	for	email	length.	
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Summary	and	Implica+ons	

§  Thus	 far,	we	have	 shown	 that	 the	net	 sen+ment	 conveyed	by	employee	
sent	mails	is	a	significant	predictor	of	stock-return	performance	

§  Interes+ngly,	 email	 length	was	 a	 stronger	 predictor	 of	 subsequent	 price	
declines	than	the	net	sen+ment	conveyed	by	the	message	body	itself.	

§  Overall,	email	content	may	be	controlled	or	manipulated	

–  Thus,	 we	 are	 also	 (and	 perhaps	 even	more!)	 interested	 in	 the	 non-
verbal,	interac+on-	or	network-based	indicators	of	poten+al	trouble.	
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Addi+onal	Explora+ons	

Other	dimensions	ripe	for	
inves+ga+on….	
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Figure	11.	Email	Networks	

Year	2000,	Q4:	
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Figure	11.	Email	Networks	

Year	2001,	Q4:	
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Figure	13.	Vocabulary	Trends	
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Figure	13.	Vocabulary	Trends	
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Figure	13.	Vocabulary	Trends	
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Figure	14.	Topic	Analysis	over	Time	
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Figure	14.	Topic	Analysis	over	Time	
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Topics	assigned	via	latent	Dirichlet	alloca+on	(LDA)	



Concluding	Remarks	

§  We	 introduce	 an	 automated	plaRorm	 to	 parse	 corporate	 email	 content,	
and	we	find	that	the	net	sen+ment	conveyed	by	employee	sent	mails	is	a	
+mely	indicator	of	stock-return	performance.	

§  Non-verbal	 indicators,	 such	 as	 email	 length	 and	 network	 structure,	 are	
par+cularly	promising	avenues	to	explore.	

§  Overall,	 we	 suggest	 the	 promise	 of	 a	 regulatory	 technology	 (RegTech)	
approach	 by	 which	 to	 systema+cally	 parse	 email	 content	 and	 network	
structure	 to	 detect	 indicators	 of	 risk	 or	malfeasance	 on	 an	 ongoing	 and	
more	+mely	basis.	

Thank	you.	
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