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Disclaimer:

I am not representing my employer (Epoch) in this talk

I cannot confirm nor deny if Epoch is using any of the methods, tools, 
results etc. mentioned in this talk
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Summary / Tips for analyzing “big” data:

- Get lots of RAM (physical/ cloud)

- Use R/Python and high performance packages (e.g. data.table, xgboost)

- Do data reduction in database (analytical db/ big data system)

- (Only) distribute embarrassingly parallel tasks (e.g. hyperparameter 
search for machine learning)

- Let engineers (store and) ETL the data (“scalable”)

- Use statistics/ domain knowledge/ thinking

- Use “big data tools” only if the above tips not enough
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I usually use other people’s code [...] I can find open source code for 
what I want to do, and my time is much better spent doing research 
and feature engineering -- Owen Zhang
http://blog.kaggle.com/2015/06/22/profiling-top-kagglers-owen-zhang-currently-1-in-the-world/



binary classification, 10M records
numeric & categorical features, non-sparse
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http://datascience.la/benchmarking-random-forest-implementations/#comment-53599















Best linear:  71.1







learn_rate = 0.1, max_depth = 6, n_trees = 300learn_rate = 0.01, max_depth = 16, n_trees = 1000
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Summary














