# **No-Bullshit Data Science**

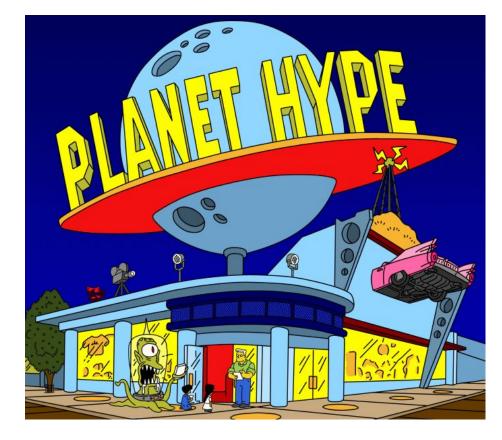
# Szilárd Pafka, PhD Chief Scientist, Epoch

R/Finance Conference Chicago, May 2017



# Szilard

DataScienceLASanta Monica, California

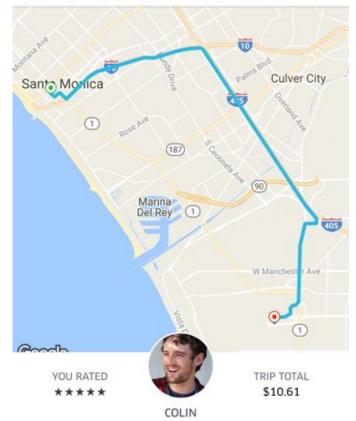

physics PhD, chief (data) scientist, meetup organizer, datascience.la, visiting professor

# Disclaimer:

I am not representing my employer (Epoch) in this talk

I cannot confirm nor deny if Epoch is using any of the methods, tools, results etc. mentioned in this talk






# AUG 14, 2016, 12:10 PM

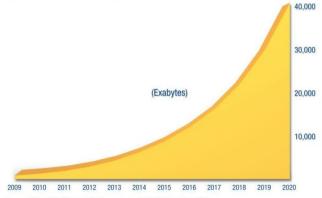
Santa Monica, CA 90401, USA

• 601-617 World Way, Los Angeles, CA 90045, USA

4





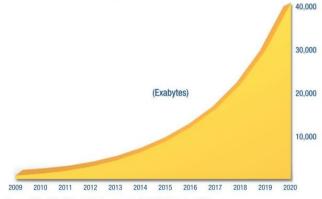





# Example #1

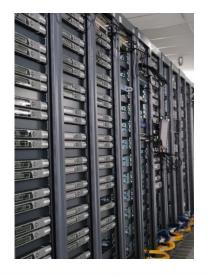
#### Figure 1

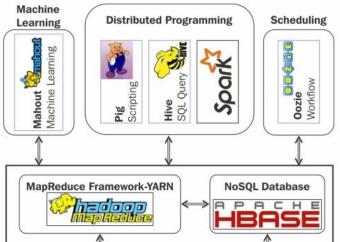
The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020




Source: IDC's Digital Universe Study, sponsored by EMC, December 2012




#### Figure 1


The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020



Source: IDC's Digital Universe Study, sponsored by EMC, December 2012

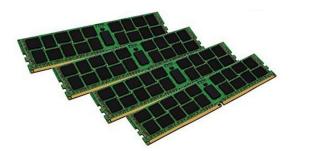










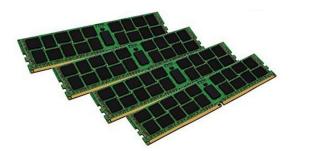



🌣 💄

Consulting service: you bring your big data problems to me, I say "your data set fits in RAM", you pay me \$10,000 for saving you \$500,000.



3:03 PM - 19 May 2015




# Kingston Technology Value RAM 128GB Kit (4x32GB) 2133MHz DDR4 ECC Reg CL15 (KVR21R15D4K4/128)

by Kingston Technology Be the first to review this item

> Was: <del>\$743.99</del> Price: **\$743.96** & FREE Shipping. Details





# Kingston Technology Value RAM 128GB Kit (4x32GB) 2133MHz DDR4 ECC Reg CL15 (KVR21R15D4K4/128)

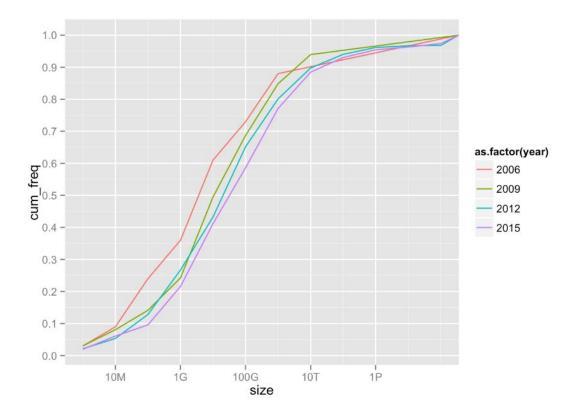
by Kingston Technology Be the first to review this item

> Was: <del>\$743.99</del> Price: **\$743.96** & FREE Shipping. Details





| Model       | vCPU | Mem (GiB) |
|-------------|------|-----------|
| r3.8xlarge  | 32   | 244       |
| x1.32xlarge | 128  | 1,952     |


| x1.32xlarge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 349                         | 1952 | 2 x 1920 SSD | \$13.338 per Hour                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|--------------|------------------------------------------|
| 1   [1]     2   [1]     3   [1]     4   [1]     5   [1]     6   [1]     7   [1]     10   [1]     11   [1]     12   [1]     13   [1]     14   [1]     15   [1]     10   [1]     11   [1]     13   [1]     14   [1]     15   [1]     16   [1]     17   [1]     18   [1]     19   [1]     11   [1]     12   [1]     13   [1]     14   [1]     15   [1]     16   [1]     17   [1]     18   [1]     19   [1]     20   [1]     21   [1]     22   [1]     23   [1]     24   [1]   [1] <t< td=""><td>1185.8%     191.1%     1185.3%     1184.6%     1184.6%     1184.6%     1184.7%     1185.3%     1185.3%     1185.4%     1185.3%     1185.4%     1185.4%     1185.4%     1185.4%     1185.4%     1182.7%     1181.5%     1181.5%     1181.5%     1182.7%     1183.3%     1184.4%     1187.3%     1187.3%     1183.3%     1184.6%     1187.3%     1183.3%     1184.6%     1187.3%     1184.6%     1187.3%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%</td><td>36      [     ]     ]     ]</td><td></td><td>65   [</td><td>97 [111111111111111111111111111111111111</td></t<> | 1185.8%     191.1%     1185.3%     1184.6%     1184.6%     1184.6%     1184.7%     1185.3%     1185.3%     1185.4%     1185.3%     1185.4%     1185.4%     1185.4%     1185.4%     1185.4%     1182.7%     1181.5%     1181.5%     1181.5%     1182.7%     1183.3%     1184.4%     1187.3%     1187.3%     1183.3%     1184.6%     1187.3%     1183.3%     1184.6%     1187.3%     1184.6%     1187.3%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6%     1184.6% | 36      [     ]     ]     ] |      | 65   [       | 97 [111111111111111111111111111111111111 |

| PID USER     | PRI | NI | VIRT  | RES   | SHR S    | CPU% N | IEM% | TIME+   | Command |      |                                       |
|--------------|-----|----|-------|-------|----------|--------|------|---------|---------|------|---------------------------------------|
| 34941 ubuntu | 20  | 0  | 1025G | 1024G | 1380 S   | 11195  | 53.3 | 1h54:07 | /pmbw   | -f   | ScanRead64PtrSimpleLoop -p 128 -P 128 |
| 34999 ubuntu | 20  | 0  | 1025G | 1024G | 1380 R   | 95.3 5 | 53.3 | 0:50.06 | ./pmbw  | -f : | ScanRead64PtrSimpleLoop -p 128 -P 128 |
| 35066 ubuntu | 20  | 0  | 1025G | 1024G | 1380 R 9 | 93.4 5 | 53.3 | 0:50.02 | ./pmbw  | -f : | ScanRead64PtrSimpleLoop -p 128 -P 128 |
| 34963 ubuntu | 20  | 0  | 1025G | 1024G | 1380 R   | 92.7 5 | 53.3 | 0:51.13 | ./pmbw  | -f : | ScanRead64PtrSimpleLoop -p 128 -P 128 |



| Largest Dataset Analyzed / Data Mined                               |  |  |  |
|---------------------------------------------------------------------|--|--|--|
| Tweet                                                               |  |  |  |
| What was the largest dataset you analyzed / data mined? [392 votes] |  |  |  |

# Szilard / dataset-sizes-kdnuggets





Szilard @DataScienceLA · Jun 17

What's the typical size of datasets you are analyzing?

18% <100MB

48% 100MB-10GB

18% 10GB-1TB

16% >1TB

151 votes • Final results



#### Szilard @DataScienceLA · Jun 17

What's the typical size of datasets you are analyzing?

18% <100MB

48% 100MB-10GB

18% 10GB-1TB

16% >1TB

151 votes • Final results

#### **TYPICAL SIZE OF DATASETS**



#### 17 Rexer Analytics



#### Szilard @DataScienceLA · Jun 17

What's the typical size of datasets you are analyzing?

18% <100MB

48% 100MB-10GB

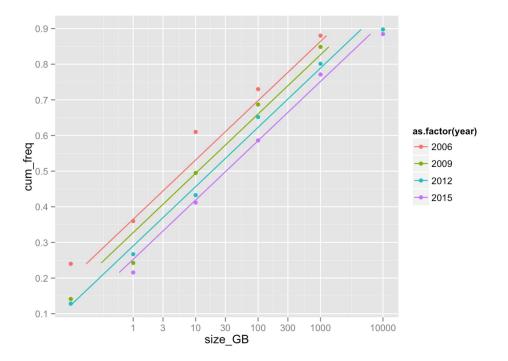
18% 10GB-1TB

16% >1TB

151 votes · Final results

#### TYPICAL SIZE OF DATASETS




#### 17 Rexer Analytics





"It takes a big man to admit his data is small" — @jcheng

## Szilard / dataset-sizes-kdnuggets



annual rate of increase of datasets of 10^0.075 ~ 1.2 that is 20%.

The size of EC2 instances with largest RAM:

| year  | type        | RAM (GB) |
|-------|-------------|----------|
| 2007  | m1.xlarge   | 15       |
| 2009  | m2.4xlarge  | 68       |
| 2012  | hs1.8xlarge | 117      |
| 2014  | r3.8xlarge  | 244      |
| 2016* | x1          | 2 TB     |

The size of EC2 instances with largest RAM:

| year  | type        | RAM (GB) |
|-------|-------------|----------|
| 2007  | m1.xlarge   | 15       |
| 2009  | m2.4xlarge  | 68       |
| 2012  | hs1.8xlarge | 117      |
| 2014  | r3.8xlarge  | 244      |
| 2016* | x1          | 2 TB     |



Szilard @DataScienceLA · 18 Nov 2015

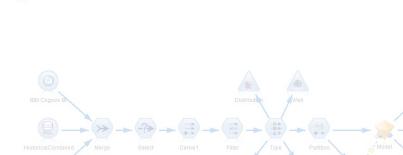
Big RAM is eating **#bigdata**: datasets for analytics grew 20% /yr (last decade **@kdnuggets**), RAM EC2 grew 50% /yr







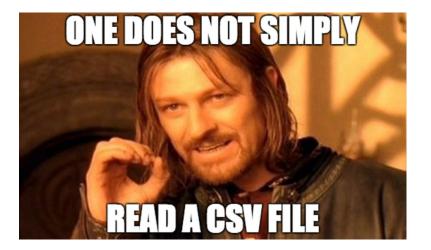







PyData

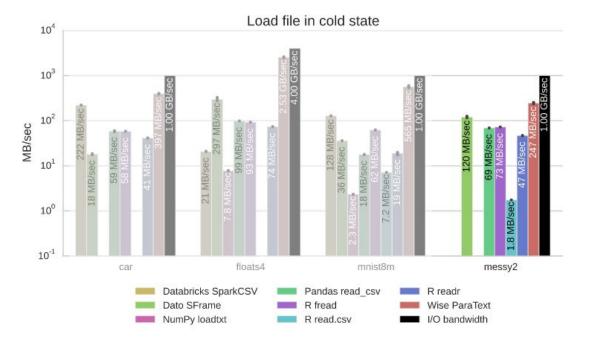



MATLAB



data frame. Yesterday I wrote a blog post about using sqldf() to import the data into SQLite as a staging area, and then sucking it from SQLite into R. This works really well for me. I was able to pull in 2GB (3 columns, 40mm rows) of data in < 5 minutes. By contrast, the read.csv command ran all night and never completed.

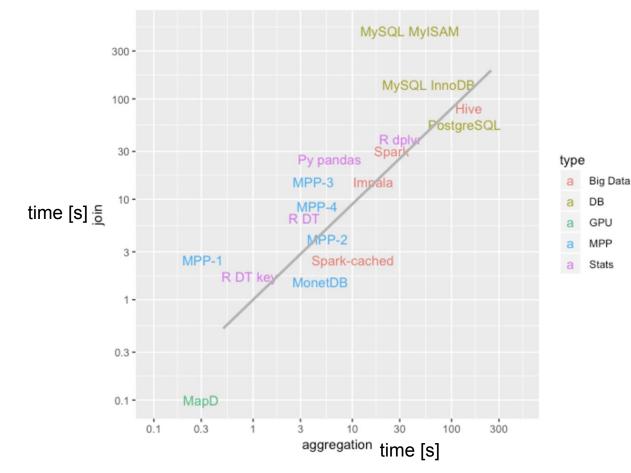
answered Nov 30 '09 at 15:48






data frame. Yesterday I wrote a blog post about using sqldf() to import the data into SQLite as a staging area, and then sucking it from SQLite into R. This works really well for me. I was able to pull in 2GB (3 columns, 40mm rows) of data in < 5 minutes. By contrast, the read.csv command ran all night and never completed.

answered Nov 30 '09 at 15:48






https://deads.gitbooks.io/paratext-bench/content/teaser.html June 2016

# Szilard / benchm-databases

# Aggregation 100M rows 1M groups Join 100M rows x 1M rows



# szilard / dataset-sizes-kdnuggets

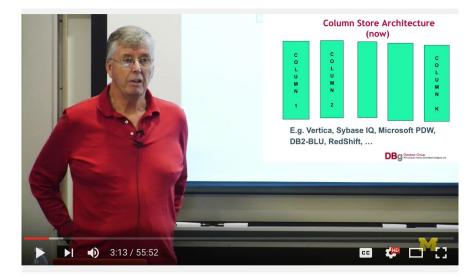
| quantile | value  |
|----------|--------|
| 50%      | 30 GB  |
| 60%      | 120 GB |
| 70%      | 0.5 TB |
| 80%      | 2 TB   |
| 90%      | 8 TB   |

(largest data analyzed)

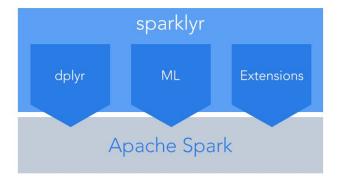
# Szilard / dataset-sizes-kdnuggets

| quantile | value  |
|----------|--------|
| 50%      | 30 GB  |
| 60%      | 120 GB |
| 70%      | 0.5 TB |
| 80%      | 2 TB   |
| 90%      | 8 TB   |

(largest data analyzed)




Michael Stonebraker | Big Data is (at least) Four Different Problems

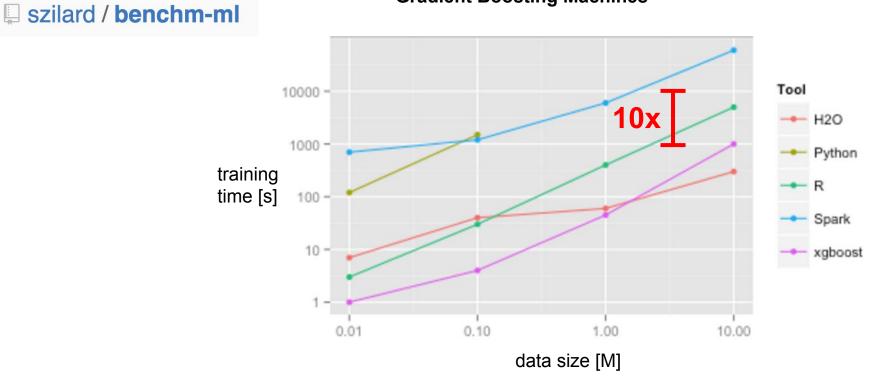

# Szilard / dataset-sizes-kdnuggets

| quantile | value  |
|----------|--------|
| 50%      | 30 GB  |
| 60%      | 120 GB |
| 70%      | 0.5 TB |
| 80%      | 2 TB   |
| 90%      | 8 TB   |

(largest data analyzed)



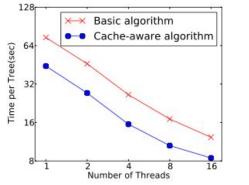
Michael Stonebraker | Big Data is (at least) Four Different Problems



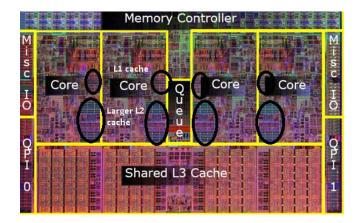



# Szilard / benchm-ml




### **Gradient Boosting Machines**

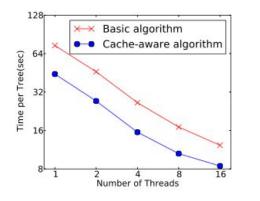



#### arXiv.org > cs > arXiv:1603.02754

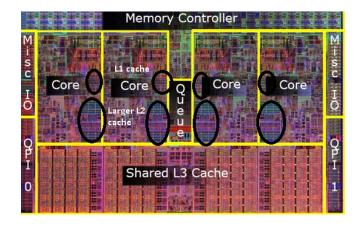
Computer Science > Learning

#### XGBoost: A Scalable Tree Boosting System



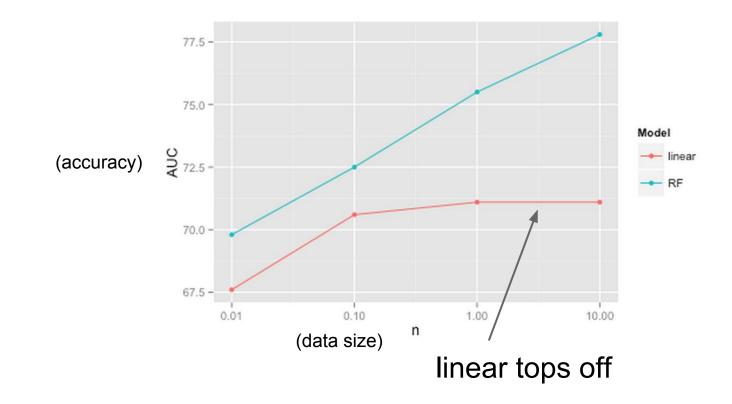


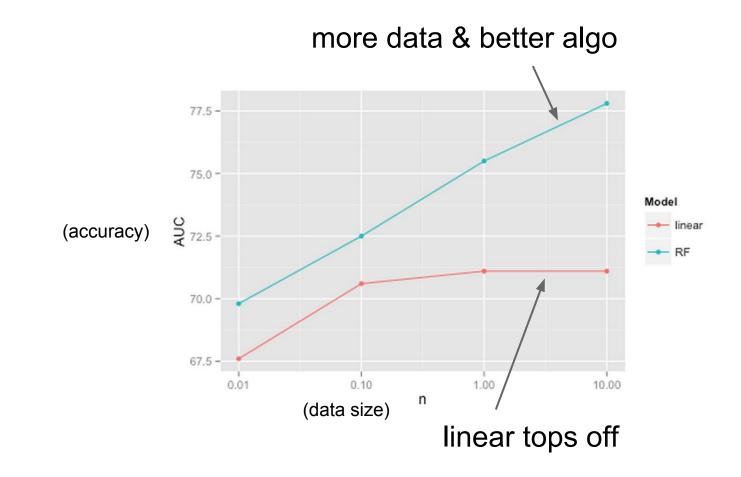


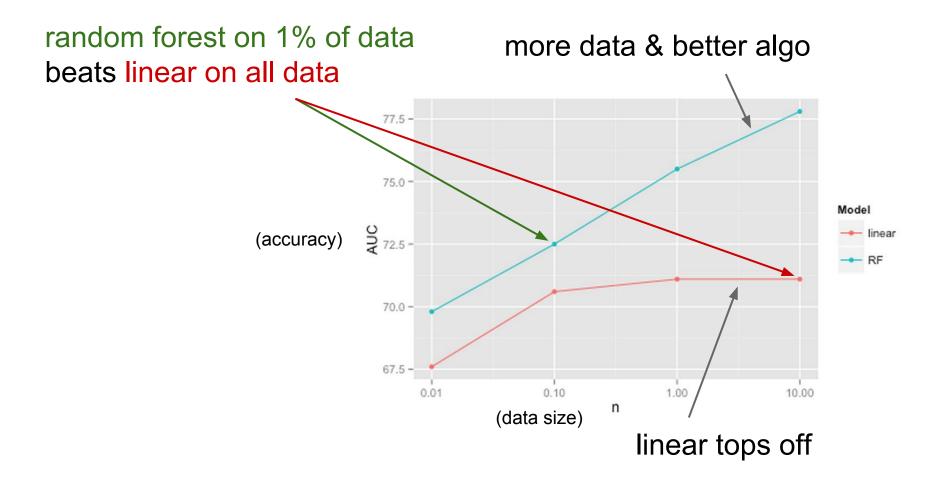


#### arXiv.org > cs > arXiv:1603.02754


Computer Science > Learning

#### XGBoost: A Scalable Tree Boosting System




















The Visual Display of Quantitative Information

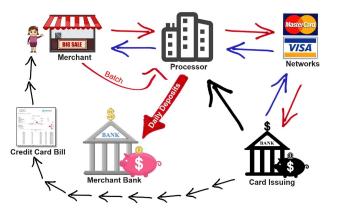
EDWARD R. TUFTE

Trevor Hastie Robert Tibshirani Jerome Friedman

# The Elements of Statistical Learning

Data Mining, Inference, and Prediction




The Visual Display of Quantitative Information

EDWARD R. TUFTE

Trevor Hastie Robert Tibshirani Jerome Friedman

# The Elements of Statistical Learning

Data Mining, Inference, and Prediction











Active packages

data.table



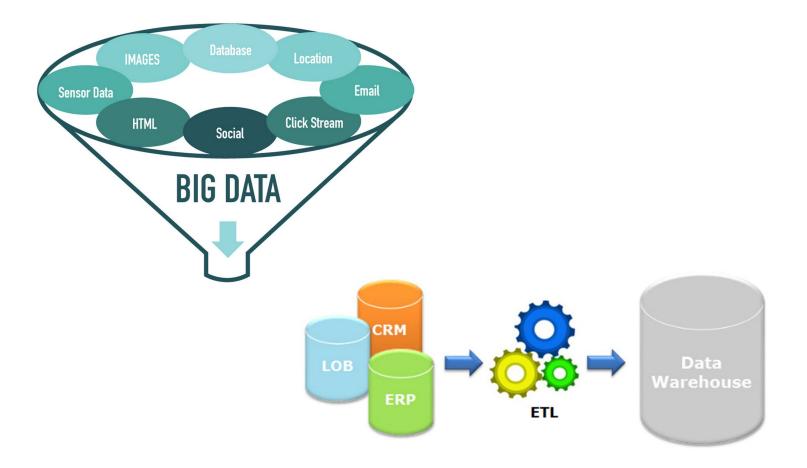


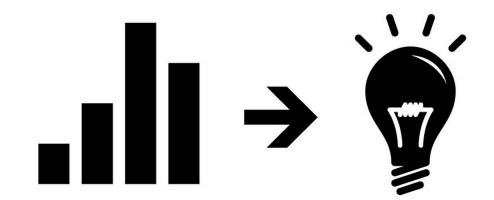




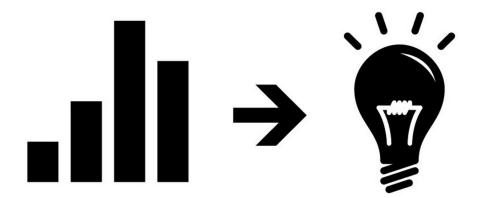












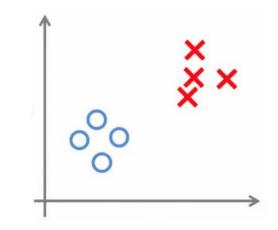









# Summary / Tips for analyzing "big" data:


- Get lots of RAM (physical/ cloud)
- Use R/Python and high performance packages (e.g. data.table, xgboost)
- Do data reduction in database (analytical db/ big data system)
- (Only) distribute embarrassingly parallel tasks (e.g. hyperparameter search for machine learning)
- Let engineers (store and) ETL the data ("scalable")
- Use statistics/ domain knowledge/ thinking
- Use "big data tools" only if the above tips not enough

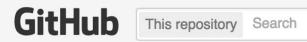
# Example #2



# open source






(10,000,000 rows)

# I usually use other people's code [...] I can find open source code for what I want to do, and my time is much better spent doing research and feature engineering -- Owen Zhang

http://blog.kaggle.com/2015/06/22/profiling-top-kagglers-owen-zhang-currently-1-in-the-world/





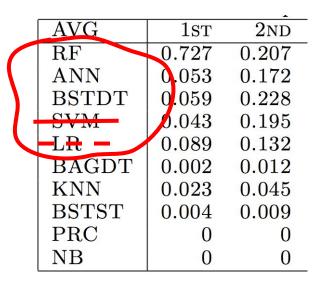


### szilard / benchm-ml





binary classification, 10M records numeric & categorical features, non-sparse


| MODEL         | $1 \mathrm{ST}$ | 2ND   |
|---------------|-----------------|-------|
|               |                 |       |
|               | 0 500           | 0.000 |
| BST-DT        | 0.580           | 0.228 |
| $\mathbf{RF}$ | 0.390           | 0.525 |
| BAG-DT        | 0.030           | 0.232 |
| SVM           | 0.000           | 0.008 |
| ANN           | 0.000           | 0.007 |
| KNN           | 0.000           | 0.000 |
| BST-STMP      | 0.000           | 0.000 |
| DT            | 0.000           | 0.000 |
| LOGREG        | 0.000           | 0.000 |
| NB            | 0.000           | 0.000 |
|               |                 |       |

An Empirical Comparison of Supervised Learning Algorithms

http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf

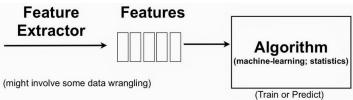
An Empirical Evaluation of Supervised Learning in High Dimensions

http://lowrank.net/nikos/pubs/empirical.pdf

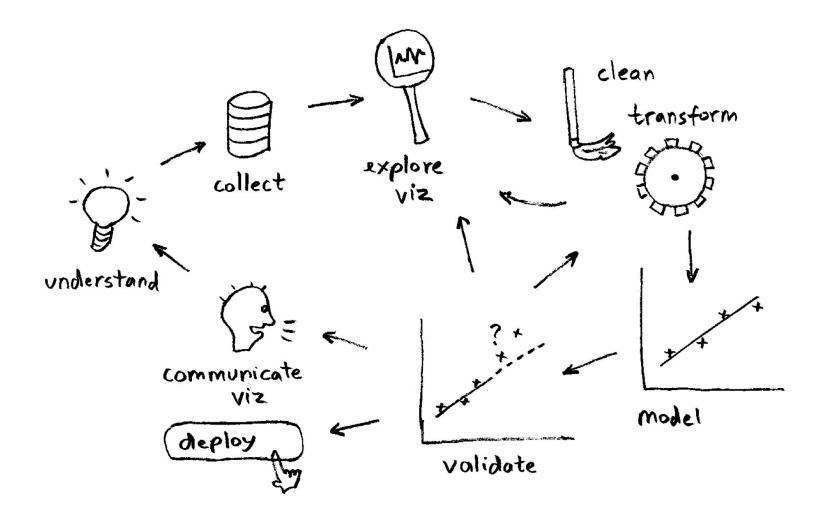


An Empirical Comparison of Supervised Learning Algorithms

http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf


An Empirical Evaluation of Supervised Learning in High Dimensions

http://lowrank.net/nikos/pubs/empirical.pdf




#### Raw Data













open source

- R packages
- Python scikit-learn
- Vowpal Wabbit
- H2O
- xgboost
- Spark MLlib
- a few others



open source

- R packages 30%
- Python scikit-learn 40%
- Vowpal Wabbit 8%
- H2O 10%
- xgboost 8%
- Spark MLlib 6%
- a few others



open source

- R packages 30%
- Python scikit-learn 40%
- Vowpal Wabbit 8%
- H2O 10%
- xgboost 8%
- Spark MLlib 6%
- a few others

Lightning-fast

**Big Data** 

Large-scale

optimized

**Distributed** 

Yes, it is possible to apply to big data!

## Scalable and fast

parallelized

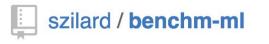
scalable performant machine learning

built for scale

| res             | Gate  | Tune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ON | TIME |
|-----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|
| Destination     | A 4 3 | 1 2:0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ON | TIME |
| PARIS           | A 1 5 | 12:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ON |      |
| FRANKFURT       | B 0 8 | 12:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ON | TIME |
| NEW YORK        | A 2 1 | 12:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ON | TIME |
| BRUSSELS        | A 3 0 | 1 2:3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ON | TIME |
| ) ROME          | B 0 1 | 1 2:3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ON | TIME |
| ) BOSTON        |       | 1 2:4 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ON | TIME |
| 2 LONDON        | A 1 9 | Street & Street, Stree |    |      |
| 9 RIO DE JANEIR | O B13 | 1 2:4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ON | TIME |
| 4 MADRID        | A 2 6 | 1 2:4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ON | TIME |
| 5 ATHENS        | A 3 7 | 12:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ON | TIME |
| 1 STOCKHOLM     | A 4 0 | 1 3:0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ON | TIME |

| res                          | Gate  | THUS    | 0.11 | TIME |
|------------------------------|-------|---------|------|------|
| Destination                  | A 4 3 | 1 2:0 0 | ON   | TIME |
| PARIS                        | A 1 5 | 12:10   | ON   |      |
| FRANKFURT                    | B 0 8 | 12:25   | ON   | TIME |
| NEW YORK                     | A 2 1 | 12:30   | ON   | TIME |
| BRUSSELS                     | A 3 0 | 12:30   | ON   | TIME |
| ROME                         | B 0 1 | 1 2:3 5 | ON   | TIME |
| ) BOSTON                     | A 1 9 | 1 2:4 0 | ON   | TIME |
| 2 LONDON<br>9 RIO DE JANEIRO | B 1 3 | 1 2:4 5 | ON   | TIME |
| 4 MADRID                     | A 2 6 | 12:45   | ON   | TIME |
| 5 ATHENS                     | A 3 7 | 1 2:5 0 | ON   | TIME |
| 1 STOCKHOLM                  | A 4 0 | 1 3:0 0 | ON   | TIME |




```
n = 10K, 100K, 1M, 10M, 100M
```

Training time RAM usage AUC CPU % by core read data, pre-process, score test data

```
n = 10K, 100K, 1M, 10M, 100M
```

Training time RAM usage AUC CPU % by core read data, pre-process, score test data







benchm-ml / 2-rf / +

#### xgboost improve

szilard authored 19 days ago

...

🖹 1.R

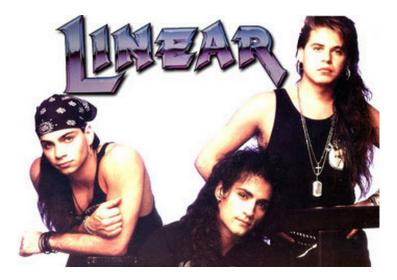
🖹 2.py

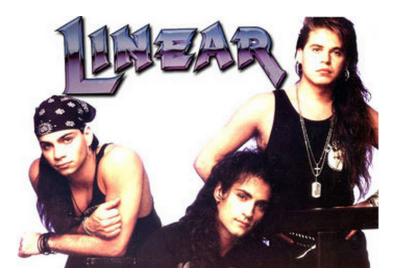
4-h2o-v3.R

4-h2o.R

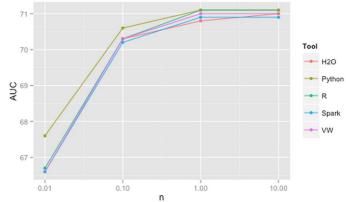






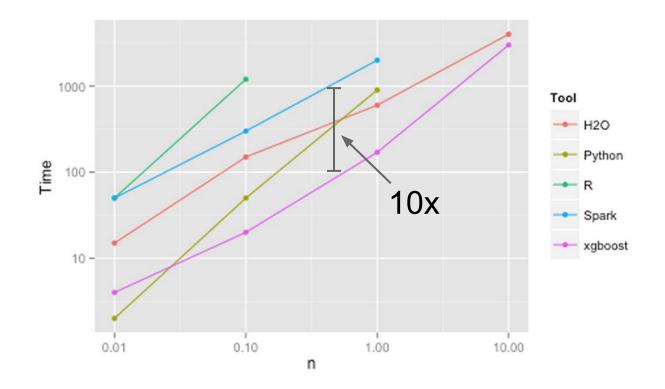


#### Simple/limited/incomplete benchmark

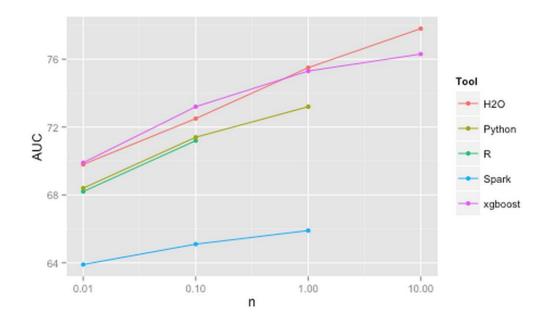


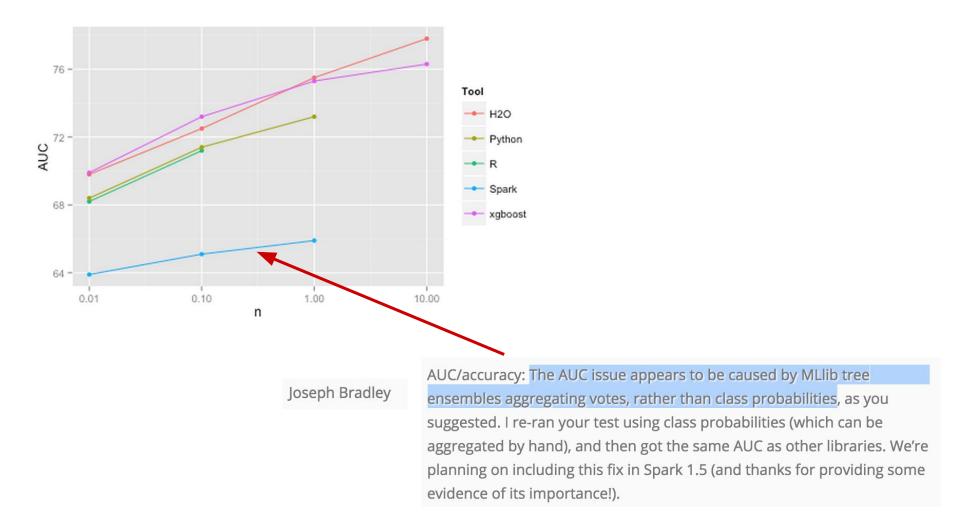

### Simple/limited/incomplete benchmark

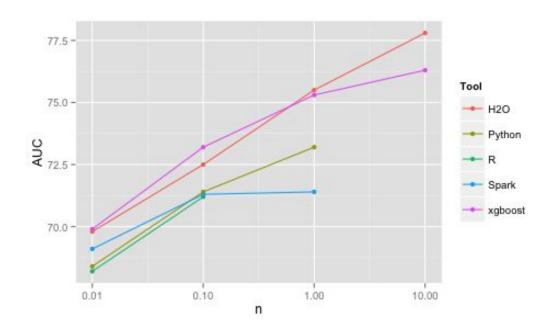
All benchmarks are wrong, but some are useful







| Tool | n    | Time (sec) | RAM (GB) |
|------|------|------------|----------|
| R    | 10K  | 0.1        | 1        |
|      | 100K | 0.5        | 1        |
|      | 1M   | 5          | 1        |
|      | 10M  | 90         | 5        |





The main conclusion here is that it is trivial to train linear models even for n = 10M rows virtually in any of these tools on a single machine in a matter of seconds. H2O and VW are the most memory efficient











Timing: I didn't try to reproduce your results yet, but have a few thoughts. The main issue with MLlib's tree implementation is that it is optimized for training shallow trees, following the PLANET project. We're working on an alternative implementation geared towards training deep trees, hopefully

aimed at Spark 1.5 or 1.6. One big benefit of running on top of Spark is that there is constant work on improving the underlying system, which MLlib will benefit from. In particular, the JVM memory management issues will improve as project Tungsten (which can be Googled) progresses.

http://datascience.la/benchmarking-random-forest-implementations/#comment-53599



Download Libraries - Documentati

## Spark Release 2.0.0



## Spark Release 2.0.0

# **DataFrame-based API is primary API**



## Spark Release 2.0.0

# **DataFrame-based API is primary API**

| Spark | ranc | lom | forest | issues | #19 |
|-------|------|-----|--------|--------|-----|
|       |      |     |        |        |     |

() Open szilard opened this issue on Jul 23, 2015 · 15 comments



szilard commented 4 days ago

It is slower than before

MLlib 1.5 - 250 sec ML 2.0 - 400 sec

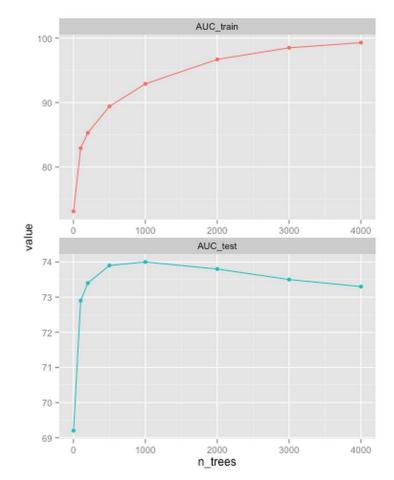


## Spark Release 2.0.0

## **DataFrame-based API is primary API**

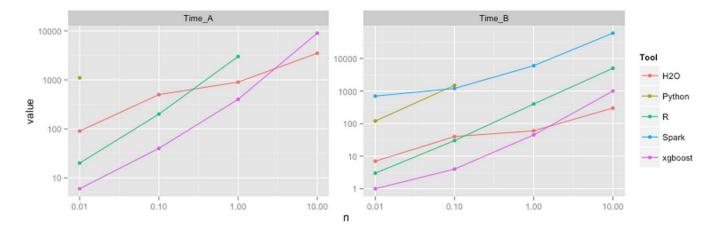


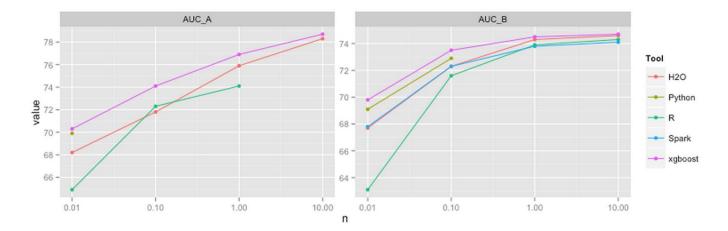



| ntree | depth | nbins | mtries | Time (hrs) | AUC  |
|-------|-------|-------|--------|------------|------|
| 500   | 20    | 20    | -1 (2) | 1.2        | 77.8 |
| 500   | 50    | 200   | -1 (2) | 4.5        | 78.9 |
| 500   | 50    | 200   | 3      | 5.5        | 78.9 |
| 5000  | 50    | 200   | -1 (2) | 45         | 79.0 |
| 500   | 100   | 1000  | -1 (2) | 8.3        | 80.1 |

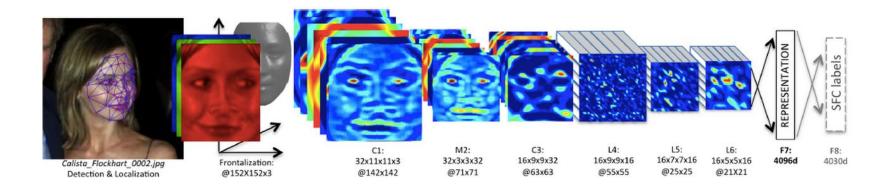
| ntree | depth | nbins | mtries | Time (hrs) | AUC  |
|-------|-------|-------|--------|------------|------|
| 500   | 20    | 20    | -1 (2) | 1.2        | 77.8 |
| 500   | 50    | 200   | -1 (2) | 4.5        | 78.9 |
| 500   | 50    | 200   | 3      | 5.5        | 78.9 |
| 5000  | 50    | 200   | -1 (2) | 45         | 79.0 |
| 500   | 100   | 1000  | -1 (2) | 8.3        | 80.1 |

Best linear: 71.1







learn\_rate = 0.01, max\_depth = 16, n\_trees = 1000

learn\_rate = 0.1, max\_depth = 6, n\_trees = 300





| ΤοοΙ    | Time (hr) | AUC  |
|---------|-----------|------|
| H2O     | 7.5       | 79.8 |
| H2O-3   | 9.5       | 81.2 |
| xgboost | 14        | 81.1 |





| Params                                                            |      | Time (s) | Epochs |
|-------------------------------------------------------------------|------|----------|--------|
| <pre>default: activation = "Rectifier", hidden = c(200,200)</pre> | 73.1 | 270      | 1.8    |
| hidden = c(50,50,50,50), input_dropout_ratio = 0.2                | 73.2 | 140      | 2.7    |

. . .

| ADADELTA rho = $0.95$ , epsilon = $1e-06$                       |      | 240 | 1.7 |
|-----------------------------------------------------------------|------|-----|-----|
| rho = 0.999, epsilon = 1e-08                                    |      | 270 | 1.9 |
| adaptive = FALSE default: rate = 0.005, decay = 1, momentum = 0 | 73.0 | 340 | 1.1 |





Big Data Borat @BigDataBorat · 22 Nov 2013 Cat data data data data data > bigdata



Big Data Borat @BigDataBorat · 22 Nov 2013 Cat data data data data data > bigdata

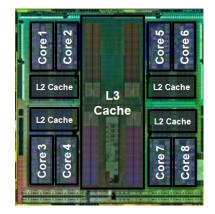
Linear models, 100M rows:

| Tool  | Time[s] | RAM[GB] |
|-------|---------|---------|
| R     | 1000    | 60      |
| Spark | 160     | 120     |
| H2O   | 40      | 20      |
| VW    | 150     |         |



Big Data Borat @BigDataBorat · 22 Nov 2013 Cat data data data data data > bigdata

Linear models, 100M rows:


| Tool  | Time[s] | RAM[GB] |
|-------|---------|---------|
| R     | 1000    | 60      |
| Spark | 160     | 120     |
| H2O   | 40      | 20      |
| VW    | 150     |         |

Linear models, 1B rows:

| Tool | Time[s] | RAM[GB] |
|------|---------|---------|
| H2O  | 500     | 100     |
| VW   | 1400    |         |

RF/GBM, 100M rows:

| Algo | ΤοοΙ    | Time[s] | Time[hr] | RAM[GB] |
|------|---------|---------|----------|---------|
| RF   | H2O     | 40000   | 11       | 80      |
|      | xgboost | 36000   | 10       | 60      |
| GBM  | H2O     | 35000   | 10       | 100     |
|      | xgboost | 110000  | 30       | 50      |



### **Distributed Systems**

H2O logistic runtime (sec):


|      | 1 node | 5 nodes |
|------|--------|---------|
| 100M | 42     | 9.9     |
| 1B   | 480    | 101     |

H2O RF runtime (sec) (5 trees):

|      | 1 node | 5 nodes |
|------|--------|---------|
| 10M  | 42     | 41      |
| 100M | 405    | 122     |





















Spafka@gmail.com

- 🍯 @DataScienceLA
- Iinkedin.com/in/szilard
- github.com/szilard