
No-Bullshit Data Science

Szilárd Pafka, PhD
Chief Scientist, Epoch

R/Finance Conference
Chicago, May 2017





Disclaimer:

I am not representing my employer (Epoch) in this talk

I cannot confirm nor deny if Epoch is using any of the methods, tools, 
results etc. mentioned in this talk











Example #1









































https://deads.gitbooks.io/paratext-bench/content/teaser.html   June 2016

https://deads.gitbooks.io/paratext-bench/content/teaser.html
https://deads.gitbooks.io/paratext-bench/content/teaser.html


Aggregation 100M rows 1M groups 
Join 100M rows x 1M rows

time [s]

time [s]



(largest data analyzed)



(largest data analyzed)



(largest data analyzed)





data size [M]

training
time [s]

10x

Gradient Boosting Machines







linear tops off
(data size)

(accuracy)



linear tops off

more data & better algo

(data size)

(accuracy)



linear tops off

more data & better algorandom forest on 1% of data 
beats linear on all data

(data size)

(accuracy)



linear tops off

more data & better algorandom forest on 1% of data 
beats linear on all data

(data size)

(accuracy)





















Summary / Tips for analyzing “big” data:

- Get lots of RAM (physical/ cloud)

- Use R/Python and high performance packages (e.g. data.table, xgboost)

- Do data reduction in database (analytical db/ big data system)

- (Only) distribute embarrassingly parallel tasks (e.g. hyperparameter 
search for machine learning)

- Let engineers (store and) ETL the data (“scalable”)

- Use statistics/ domain knowledge/ thinking

- Use “big data tools” only if the above tips not enough



Example #2





I usually use other people’s code [...] I can find open source code for 
what I want to do, and my time is much better spent doing research 
and feature engineering -- Owen Zhang
http://blog.kaggle.com/2015/06/22/profiling-top-kagglers-owen-zhang-currently-1-in-the-world/



binary classification, 10M records
numeric & categorical features, non-sparse



http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf

http://lowrank.net/nikos/pubs/empirical.pdf



http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf

http://lowrank.net/nikos/pubs/empirical.pdf







- R packages
- Python scikit-learn
- Vowpal Wabbit
- H2O
- xgboost
- Spark MLlib
- a few others



- R packages 30%
- Python scikit-learn 40%
- Vowpal Wabbit 8%
- H2O 10%
- xgboost 8%
- Spark MLlib 6%
- a few others



- R packages 30%
- Python scikit-learn 40%
- Vowpal Wabbit 8%
- H2O 10%
- xgboost 8%
- Spark MLlib 6%
- a few others





EC2



n = 10K, 100K, 1M, 10M, 100M

Training time
RAM usage
AUC
CPU % by core
read data, pre-process, score test data



n = 10K, 100K, 1M, 10M, 100M

Training time
RAM usage
AUC
CPU % by core
read data, pre-process, score test data

















10x









http://datascience.la/benchmarking-random-forest-implementations/#comment-53599















Best linear:  71.1







learn_rate = 0.1, max_depth = 6, n_trees = 300learn_rate = 0.01, max_depth = 16, n_trees = 1000







...















Summary














