The PE Package
Modeling private equity in the 21st Century

Thomas P. Harte & Axel Buchner†

†University of Passau, Germany

R/Finance 2017
University of Illinois at Chicago
Saturday, 2017-05-20
1. Disclaimer & License
2. Introduction
3. Risk Management Framework (I): Outline
4. Modeling PE Fund Dynamics
5. Risk Management Framework (II): Risk Measures
6. Fund Structure & Fees
7. Extensive List of To-Dos
8. References

Disclaimer

Thomas P. Harte and Axel Buchner (“the Authors”) are providing this presentation and its contents (“the Content”) for educational purposes only at the *R in Finance Conference*, 2017-05-20, Chicago, IL. Neither of the Authors is a registered investment advisor and neither of the Authors purports to offer investment advice nor business advice.

THE AUTHORS SPECIFICALLY DISCLAIM ANY PERSONAL LIABILITY, LOSS OR RISK INCURRED AS A CONSEQUENCE OF THE USE AND APPLICATION, EITHER DIRECTLY OR INDIRECTLY, OF THE CONTENT. THE AUTHORS SPECIFICALLY DISCLAIM ANY REPRESENTATION, WHETHER EXPLICIT OR IMPLIED, THAT APPLYING THE CONTENT WILL LEAD TO SIMILAR RESULTS IN A BUSINESS SETTING. THE RESULTS PRESENTED IN THE CONTENT ARE NOT NECESSARILY TYPICAL AND SHOULD NOT DETERMINE EXPECTATIONS OF FINANCIAL OR BUSINESS RESULTS.

License

You may use the PE package and the Content under the terms of the GNU General Public License v3.0 Thomas P. Harte & Axel Buchner

† The PE Package
Disclaimer & License

- **Disclaimer** Thomas P. Harte and Axel Buchner (“the Authors”) are providing this presentation and its contents (“the Content”) for educational purposes only at the *R in Finance Conference*, 2017-05-20, Chicago, IL. Neither of the Authors is a registered investment advisor and neither of the Authors purports to offer investment advice nor business advice.

THE AUTHORS SPECIFICALLY DISCLAIM ANY PERSONAL LIABILITY, LOSS OR RISK INCURRED AS A CONSEQUENCE OF THE USE AND APPLICATION, EITHER DIRECTLY OR INDIRECTLY, OF THE CONTENT. THE AUTHORS SPECIFICALLY DISCLAIM ANY REPRESENTATION, WHETHER EXPLICIT OR IMPLIED, THAT APPLYING THE CONTENT WILL LEAD TO SIMILAR RESULTS IN A BUSINESS SETTING. THE RESULTS PRESENTED IN THE CONTENT ARE NOT NECESSARILY TYPICAL AND SHOULD NOT DETERMINE EXPECTATIONS OF FINANCIAL OR BUSINESS RESULTS.

- **License** You may use the PE package and the Content under the terms of the [GNU General Public License v3.0](https://www.gnu.org/licenses/gpl-3.0.html)
Disclaimer

Thomas P. Harte and Axel Buchner ("the Authors") are providing this presentation and its contents ("the Content") for educational purposes only at the *R in Finance Conference*, 2017-05-20, Chicago, IL. Neither of the Authors is a registered investment advisor and neither of the Authors purports to offer investment advice nor business advice.

THE AUTHORS SPECIFICALLY DISCLAIM ANY PERSONAL LIABILITY, LOSS OR RISK INCURRED AS A CONSEQUENCE OF THE USE AND APPLICATION, EITHER DIRECTLY OR INDIRECTLY, OF THE CONTENT. THE AUTHORS SPECIFICALLY DISCLAIM ANY REPRESENTATION, WHETHER EXPPLICIT OR IMPLIED, THAT APPLYING THE CONTENT WILL LEAD TO SIMILAR RESULTS IN A BUSINESS SETTING. THE RESULTS PRESENTED IN THE CONTENT ARE NOT NECESSARILY TYPICAL AND SHOULD NOT DETERMINE EXPECTATIONS OF FINANCIAL OR BUSINESS RESULTS.

License

You may use the PE package and the Content under the terms of the GNU General Public License v3.0
Private equity: Why bother?

- Private equity ("PE") investments continue to increase within institutional portfolios:

 - Investors are looking for diversification (relative to traditional investments)
 - Investors are looking for yield

Total assets under management in PE now exceed USD 3.0 trillion globally.

Despite the apparent importance of PE as an asset class, industry-wide understanding of how originators and investors alike can measure the risks of investing in PE remains limited, modeling is primitive by quantitative-finance standards, and investors have no way to gauge the cost of fees other than to use rules of thumb from historical data, if available.

Objectives:

1. Outline the first comprehensive risk-management framework for private equity fund investments.
2. Describe the underlying stochastic model for the dynamics of PE funds: We introduce a continuous-time model for cash-flow and value dynamics.
3. Describe the structure of fixed and variable fees within an equilibrium valuation framework and evaluate their impact on PE fund performance.
4. Make this model Open Source: We want this framework to become the standard model used by investors for their PE positions.

.. et tenebrae eam non comprehendunt.

Initium Sancti Evangelii Secundum Joannem
Private equity ("PE") investments continue to increase within institutional portfolios:
- investors are looking for diversification (relative to traditional investments)
Private equity (“PE”) investments continue to increase within institutional portfolios:

- investors are looking for diversification (relative to traditional investments)
- investors are looking for yield
Private equity: Why bother?

- Private equity ("PE") investments continue to increase within institutional portfolios:
 - investors are looking for diversification (relative to traditional investments)
 - investors are looking for yield
- Total assets under management in PE now exceed USD 3.0 trillion globally
Private equity: Why bother?

- Private equity (“PE”) investments continue to increase within institutional portfolios:
 - investors are looking for diversification (relative to traditional investments)
 - investors are looking for yield

- Total assets under management in PE now exceed USD 3.0 trillion globally

- Despite the apparent importance of PE as an asset class, industry-wide understanding of how originators and investors alike can measure the risks of investing in PE remains limited, modeling is primitive by quantitative-finance standards, and investors have no way to gauge the cost of fees other than to use rules of thumb from historical data, if available.
Private equity: Why bother?

- Private equity ("PE") investments continue to increase within institutional portfolios:
 - investors are looking for diversification (relative to traditional investments)
 - investors are looking for yield
- Total assets under management in PE now exceed USD 3.0 trillion globally
- Despite the apparent importance of PE as an asset class, industry-wide understanding of how originators and investors alike can measure the risks of investing in PE remains limited, modeling is primitive by quantitative-finance standards, and investors have no way to gauge the cost of fees other than to use rules of thumb from historical data, if available
Private equity: Why bother?

- Private equity (“PE”) investments continue to increase within institutional portfolios:
 - investors are looking for diversification (relative to traditional investments)
 - investors are looking for yield

- Total assets under management in PE now exceed USD 3.0 trillion globally

- Despite the apparent importance of PE as an asset class, industry-wide understanding of how originators and investors alike can measure the risks of investing in PE remains limited, modeling is primitive by quantitative-finance standards, and investors have no way to gauge the cost of fees other than to use rules of thumb from historical data, if available

 \[\ldots\textit{et lux in tenebris lucet}\ldots\]

 \textit{Initium Sancti Evangelii Secundum Joannem}

- Objectives:
Private equity ("PE") investments continue to increase within institutional portfolios:
- investors are looking for diversification (relative to traditional investments)
- investors are looking for yield

Total assets under management in PE now exceed USD 3.0 trillion globally

Despite the apparent importance of PE as an asset class, industry-wide understanding of how originators and investors alike can measure the risks of investing in PE remains limited, modeling is primitive by quantitative-finance standards, and investors have no way to gauge the cost of fees other than to use rules of thumb from historical data, if available

Objectives:
1. Outline the first comprehensive risk-management framework for private equity fund investments
Private equity (“PE”) investments continue to increase within institutional portfolios:
- investors are looking for diversification (relative to traditional investments)
- investors are looking for yield

Total assets under management in PE now exceed USD 3.0 trillion globally

Despite the apparent importance of PE as an asset class, industry-wide understanding of how originators and investors alike can measure the risks of investing in PE remains limited, modeling is primitive by quantitative-finance standards, and investors have no way to gauge the cost of fees other than to use rules of thumb from historical data, if available

Objectives:
1. Outline the first comprehensive risk-management framework for private equity fund investments
2. Describe the underlying stochastic model for the dynamics of PE funds: We introduce a continuous-time model for cash-flow and value dynamics
Private equity (“PE”) investments continue to increase within institutional portfolios:
- investors are looking for diversification (relative to traditional investments)
- investors are looking for yield

Total assets under management in PE now exceed USD 3.0 trillion globally

Despite the apparent importance of PE as an asset class, industry-wide understanding of how originators and investors alike can measure the risks of investing in PE remains limited, modeling is primitive by quantitative-finance standards, and investors have no way to gauge the cost of fees other than to use rules of thumb from historical data, if available

Objectives:
1. Outline the first comprehensive risk-management framework for private equity fund investments
2. Describe the underlying stochastic model for the dynamics of PE funds: We introduce a continuous-time model for cash-flow and value dynamics
3. Describe the structure of fixed and variable fees within an equilibrium valuation framework and evaluate their impact on PE fund performance
Private equity: Why bother?

- Private equity ("PE") investments continue to increase within institutional portfolios:
 - investors are looking for diversification (relative to traditional investments)
 - investors are looking for yield

- Total assets under management in PE now exceed USD 3.0 trillion globally

- Despite the apparent importance of PE as an asset class, industry-wide understanding of how originators and investors alike can measure the risks of investing in PE remains limited, modeling is primitive by quantitative-finance standards, and investors have no way to gauge the cost of fees other than to use rules of thumb from historical data, if available

- **Objectives:**
 1. Outline the first comprehensive risk-management framework for private equity fund investments
 2. Describe the underlying stochastic model for the dynamics of PE funds: We introduce a continuous-time model for cash-flow and value dynamics
 3. Describe the structure of fixed and variable fees within an equilibrium valuation framework and evaluate their impact on PE fund performance
 4. Make this model Open Source: We want this framework to become the standard model used by investors for their PE positions
Private equity ("PE") investments continue to increase within institutional portfolios:
- investors are looking for diversification (relative to traditional investments)
- investors are looking for yield

Total assets under management in PE now exceed USD 3.0 trillion globally

Despite the apparent importance of PE as an asset class, industry-wide understanding of how originators and investors alike can measure the risks of investing in PE remains limited, modeling is primitive by quantitative-finance standards, and investors have no way to gauge the cost of fees other than to use rules of thumb from historical data, if available

Objectives:

1. Outline the first comprehensive risk-management framework for private equity fund investments
2. Describe the underlying stochastic model for the dynamics of PE funds: We introduce a continuous-time model for cash-flow and value dynamics
3. Describe the structure of fixed and variable fees within an equilibrium valuation framework and evaluate their impact on PE fund performance
4. Make this model Open Source: We want this framework to become the standard model used by investors for their PE positions
Private equity: Why bother?

- Private equity (“PE”) investments continue to increase within institutional portfolios:
 - investors are looking for diversification (relative to traditional investments)
 - investors are looking for yield

- Total assets under management in PE now exceed USD 3.0 trillion globally

- Despite the apparent importance of PE as an asset class, industry-wide understanding of how originators and investors alike can measure the risks of investing in PE remains limited, modeling is primitive by quantitative-finance standards, and investors have no way to gauge the cost of fees other than to use rules of thumb from historical data, if available

Objectives:

1. Outline the first comprehensive risk-management framework for private equity fund investments
2. Describe the underlying stochastic model for the dynamics of PE funds: We introduce a continuous-time model for cash-flow and value dynamics
3. Describe the structure of fixed and variable fees within an equilibrium valuation framework and evaluate their impact on PE fund performance
4. Make this model Open Source: We want this framework to become the standard model used by investors for their PE positions

...et tenebrae eam non comprehenderunt.

Initium Sancti Evangelii Secundum Joannem
Private equity: Why bother?

- Private equity (“PE”) investments continue to increase within institutional portfolios:
 - investors are looking for diversification (relative to traditional investments)
 - investors are looking for yield
- Total assets under management in PE now exceed USD 3.0 trillion globally
- Despite the apparent importance of PE as an asset class, industry-wide understanding of how originators and investors alike can measure the risks of investing in PE remains limited, modeling is primitive by quantitative-finance standards, and investors have no way to gauge the cost of fees other than to use rules of thumb from historical data, if available
- **Objectives:**
 1. Outline the first comprehensive risk-management framework for private equity fund investments
 2. Describe the underlying stochastic model for the dynamics of PE funds: We introduce a continuous-time model for cash-flow and value dynamics
 3. Describe the structure of fixed and variable fees within an equilibrium valuation framework and evaluate their impact on PE fund performance
 4. Make this model Open Source: We want this framework to become the standard model used by investors for their PE positions

...et tenebrae eam non comprehenderunt.

Initium Sancti Evangeli Secundum Joannem
What is private equity?

- Equity invested in non-quoted companies
What is private equity?

- Equity invested in non-quoted companies
- Investments structured as convertible debt
What is private equity?

- Equity invested in non-quoted companies
- Investments structured as convertible debt
- Take-private deals
What is private equity?

- Equity invested in non-quoted companies
- Investments structured as convertible debt
- Take-private deals
- Financial instruments not publicly traded even though the companies are
What is private equity?

- Equity invested in non-quoted companies
- Investments structured as convertible debt
- Take-private deals
- Financial instruments not publicly traded even though the companies are
- Fund-investing, direct-investing
What is private equity?

- Equity invested in non-quoted companies
- Investments structured as convertible debt
- Take-private deals
- Financial instruments not publicly traded even though the companies are
- Fund-investing, direct-investing
- Secondary investments
What is private equity?

- Equity invested in non-quoted companies
- Investments structured as convertible debt
- Take-private deals
- Financial instruments not publicly traded even though the companies are
- Fund-investing, direct-investing
- Secondary investments
- Fund of funds
What is private equity?

- Equity invested in non-quoted companies
- Investments structured as convertible debt
- Take-private deals
- Financial instruments not publicly traded even though the companies are
- Fund-investing, direct-investing
- Secondary investments
- Fund of funds
What is the structure of private equity?

Figure: Partnership structure of private-equity funds: the General Partner ("GP") is the investment manager for the Limited Partners ("LP") who invest in the GP’s fund(s).

- **GP**
- **Fund I**
- **Fund II**
- **Fund VI**
- **LP 1**
- **LP 2**
- **LP 3**
- **LP N**
What is a PE fund’s life cycle? (I)

1. GP forms a new fund

2. GP raises capital from LPs

3. LP commits C_0 in capital for T_L

4. GP draws on each LP's C_0 for T_I, where $I \leq L$

5. GP invests in portfolio companies throughout T_I

6. GP harvests investments at any time $0 < t \leq T_L$

7. GP exacts fees from LPs' committed capital (some fixed, some variable)

8. GP distributes proceeds according to the fund's waterfall

9. GP fully liquidates the fund at some time $0 \leq t \leq T_L$
What is a PE fund’s life cycle? (I)

1. GP forms a new fund
2. GP raises capital from LPs
What is a PE fund’s life cycle? (I)

1. GP forms a new fund
2. GP raises capital from LPs
3. LP commits C_0 in capital for T_L
What is a PE fund’s life cycle? (I)

1. GP forms a new fund
2. GP raises capital from LPs
3. LP commits C_0 in capital for T_L
4. GP draws on each LP’s C_0 for T_I, where $I \leq L$

Thomas P. Harte & Axel Buchner

The PE Package
What is a PE fund’s life cycle? (I)

1. GP forms a new fund
2. GP raises capital from LPs
3. LP commits C_0 in capital for T_L
4. GP draws on each LP’s C_0 for T_I, where $I \leq L$
5. GP invests in portfolio companies throughout T_I
What is a PE fund’s life cycle? (I)

1. GP forms a new fund
2. GP raises capital from LPs
3. LP commits C_0 in capital for T_L
4. GP draws on each LP’s C_0 for T_I, where $I \leq L$
5. GP invests in portfolio companies throughout T_I
6. GP harvests investments at any time $0 < t \leq T_L$
What is a PE fund’s life cycle? (I)

1. GP forms a new fund
2. GP raises capital from LPs
3. LP commits C_0 in capital for T_L
4. GP draws on each LP’s C_0 for T_I, where $I \leq L$
5. GP invests in portfolio companies throughout T_I
6. GP harvests investments at any time $0 < t \leq T_L$
7. GP exacts fees from LPs’ committed capital (some fixed, some variable)
What is a PE fund’s life cycle? (I)

1. GP forms a new fund
2. GP raises capital from LPs
3. LP commits C_0 in capital for T_L
4. GP draws on each LP’s C_0 for T_I, where $I \leq L$
5. GP invests in portfolio companies throughout T_I
6. GP harvests investments at any time $0 < t \leq T_L$
7. GP exacts fees from LPs’ committed capital (some fixed, some variable)
8. GP distributes proceeds according to the fund’s waterfall
What is a PE fund’s life cycle? (I)

1. GP forms a new fund
2. GP raises capital from LPs
3. LP commits C_0 in capital for T_L
4. GP draws on each LP’s C_0 for T_I, where $I \leq L$
5. GP invests in portfolio companies throughout T_I
6. GP harvests investments at any time $0 < t \leq T_L$
7. GP exacts fees from LPs’ committed capital (some fixed, some variable)
8. GP distributes proceeds according to the fund’s waterfall
9. GP fully liquidates the fund at some time $0 \leq t \leq T_L$
What is a PE fund’s life cycle? (I)

1. GP forms a new fund
2. GP raises capital from LPs
3. LP commits C_0 in capital for T_L
4. GP draws on each LP’s C_0 for T_I, where $I \leq L$
5. GP invests in portfolio companies throughout T_I
6. GP harvests investments at any time $0 < t \leq T_L$
7. GP exacts fees from LPs’ committed capital (some fixed, some variable)
8. GP distributes proceeds according to the fund’s waterfall
9. GP fully liquidates the fund at some time $0 \leq t \leq T_L$
What is a PE fund’s life cycle? (II)

- Capital drawdowns, or calls
What is a PE fund’s life cycle? (II)

- Capital drawdowns, or calls

![Graph of PE Capital Drawdowns](image)

- Capital distributions, or returns
What is a PE fund’s life cycle? (II)

- Capital drawdowns, or calls
- Capital distributions, or returns

Fund value
What is a PE fund’s life cycle? (II)

- Capital drawdowns, or calls
- Capital distributions, or returns
- Fund value
What is a PE fund’s life cycle? (II)

- Capital drawdowns, or calls
- Capital distributions, or returns
- Fund value
- Net cash distribution
What is the state of the art in PE data?

- Thomson ONE (formerly “Venture Economics” / “TVE”)

Thomas P. Harte & Axel Buchner
What is the state of the art in PE data?

- Thomson ONE (formerly “Venture Economics” / “TVE”)
- Cepres
What is the state of the art in PE data?

- Thomson ONE (formerly “Venture Economics” / “TVE”)
- Cepres
- Cambridge Associates
What is the state of the art in PE data?

- Thomson ONE (formerly “Venture Economics” / “TVE”)
- Cepres
- Cambridge Associates

![Private Manager Screening Process](image-url)
What is the state of the art in PE data?

- Thomson ONE (formerly “Venture Economics” / “TVE”)
- Cepres
- Cambridge Associates
- Preqin
What is the state of the art in PE data?

- Thomson ONE (formerly “Venture Economics” / “TVE”)
- Cepres
- Cambridge Associates
- Prequin: We’re currently working with Prequin on aspects of their data
What is the state of the art in PE data?

- Thomson ONE (formerly “Venture Economics” / “TVE”)
- Cepres
- Cambridge Associates
- Preqin: We’re currently working with Preqin on aspects of their data
What is the state of the art in PE data?

- Thomson ONE (formerly “Venture Economics” / “TVE”)

- Cepres

- Cambridge Associates

- Preqin: We’re currently working with Preqin on aspects of their data
What is the state of the art in PE modeling?

- Besides the PE package …?
What is the state of the art in PE modeling?

- Besides the PE package …?
- GPs: originators use DCF models and report a modeled NAV
What is the state of the art in PE modeling?

- Besides the PE package ...?
- GPs: originators use DCF models and report a modeled NAV
- LPs: mainly roll-your-own models on a spreadsheet
What is the state of the art in PE modeling?

- Besides the PE package ...?
- GPs: originators use DCF models and report a modeled NAV
- LPs: mainly roll-your-own models on a spreadsheet
- MSCI
What is the state of the art in PE modeling?

- Besides the PE package . . . ?
- GPs: originators use DCF models and report a modeled NAV
- LPs: mainly roll-your-own models on a spreadsheet
- MSCI

\[
\begin{align*}
\Delta D_t &= \delta_t (C_0 - D_t) \\
\Delta R_t &= \nu_t V_t (1 + G_t) \\
\nu_t &= \max(Y_t, (t_L - B)) \\
\Delta V_t &= V_t G + \Delta D_t - \Delta R_t,
\end{align*}
\]

The drawdown rate, \(\delta_t\), is provided by the user, as are \(G\) (the exogenous growth rate), \(Y\) (the exogenous yield), and \(B\) (a “bowing factor” to control the rate of distribution).

Aside from the deterministic nature of this discrete-time model and the user-supplied parameterization, a critically limiting aspect of it is that it does not account for fees.
What is the state of the art in PE modeling?

- Besides the PE package . . .?
- GPs: originators use DCF models and report a modeled NAV
- LPs: mainly roll-your-own models on a spreadsheet
- MSCI

Yale Endowment Model [25]

Illiquid Alternative Asset Fund Modeling

Dean Takahashi
Senior Director, Yale University Investments Office

Seth Alexander
Associate Director, Yale University Investments Office
What is the state of the art in PE modeling?

- Besides the PE package …?
- GPs: originators use DCF models and report a modeled NAV
- LPs: mainly roll-your-own models on a spreadsheet
- MSCI

- Yale Endowment Model [25], when written in terms of our notation (details of which is given in the following sections):

\[
\begin{align*}
\Delta D_t &= \delta_t(C_0 - D_t) \\
\Delta R_t &= \nu_t V_t(1 + G) \\
\nu_t &= \max(Y, \left(\frac{t}{L}\right)^B) \\
\Delta V_t &= V_t G + \Delta D_t - \Delta R_t,
\end{align*}
\]

The drawdown rate, \(\delta_t\), is provided by the user, as are \(G\) (the exogenous growth rate), \(Y\) (the exogenous yield), and \(B\) (a “bowing factor” to control the rate of distribution)
What is the state of the art in PE modeling?

- Besides the PE package . . . ?
- GPs: originators use DCF models and report a modeled NAV
- LPs: mainly roll-your-own models on a spreadsheet
- MSCI

- Yale Endowment Model [25], when written in terms of our notation (details of which is given in the following sections):

\[
\begin{align*}
\Delta D_t &= \delta_t (C_0 - D_t) \\
\Delta R_t &= \nu_t V_t (1 + G) \\
\nu_t &= \max(Y, \left(\frac{t}{L}\right)^B) \\
\Delta V_t &= V_t G + \Delta D_t - \Delta R_t,
\end{align*}
\]

The drawdown rate, δ_t, is provided by the user, as are G (the exogenous growth rate), Y (the exogenous yield), and B (a “bowing factor” to control the rate of distribution)

Aside from the deterministic nature of this discrete-time model and the user-supplied parameterization, a critically limiting aspect of it is that it does not account for fees
What is the state of the art in PE modeling?

- Besides the PE package . . .?
- GPs: originators use DCF models and report a modeled NAV
- LPs: mainly roll-your-own models on a spreadsheet
- MSCI

Yale Endowment Model [25], when written in terms of our notation (details of which is given in the following sections):

\[
\begin{align*}
\Delta D_t &= \delta_t (C_0 - D_t) \\
\Delta R_t &= \nu_t V_t (1 + G) \\
\nu_t &= \max \left(Y, \left(\frac{t}{L} \right)^B \right) \\
\Delta V_t &= V_t G + \Delta D_t - \Delta R_t,
\end{align*}
\]

The drawdown rate, \(\delta_t \), is provided by the user, as are \(G \) (the exogenous growth rate), \(Y \) (the exogenous yield), and \(B \) (a “bowing factor” to control the rate of distribution)

Aside from the deterministic nature of this discrete-time model and the user-supplied parameterization, a critically limiting aspect of it is that it does not account for fees...
The PE package currently implements the models proposed in two of Axel’s forthcoming papers:

- **Risk Management Framework:**

The above are the culmination of work described in Axel’s prior publications in the field of PE modeling [16, 20, 9, 10, 11, 23, 19, 7, 6, 8, 22, 1, 5, 17, 21, 4, 2, 18, 3, 15, 14, 13].
The PE package currently implements the models proposed in two of Axel’s forthcoming papers:

1. **Risk Management Framework:**
The PE package currently implements the models proposed in two of Axel’s forthcoming papers:

1. **Risk Management Framework:**

2. **PE Fund Structure and Fees:**
The PE package currently implements the models proposed in two of Axel’s forthcoming papers:

1. **Risk Management Framework:**

2. **PE Fund Structure and Fees:**
The PE package currently implements the models proposed in two of Axel’s forthcoming papers:

1. **Risk Management Framework:**

2. **PE Fund Structure and Fees:**
The PE package: reference papers

The PE package currently implements the models proposed in two of Axel’s forthcoming papers:

- **Risk Management Framework:**

- **PE Fund Structure and Fees:**
The PE package currently implements the models proposed in two of Axel’s forthcoming papers:

1. **Risk Management Framework:**

2. **PE Fund Structure and Fees:**

The above are the culmination of work described in Axel’s prior publications in the field of PE modeling [16, 20, 9, 10, 11, 23, 19, 7, 6, 8, 22, 1, 5, 17, 21, 4, 2, 18, 3, 15, 14, 13]
The PE package currently implements the models proposed in two of Axel’s forthcoming papers:

1. **Risk Management Framework:**

2. **PE Fund Structure and Fees:**

The above are the culmination of work described in Axel’s prior publications in the field of PE modeling [16, 20, 9, 10, 11, 23, 19, 7, 6, 8, 22, 1, 5, 17, 21, 4, 2, 18, 3, 15, 14, 13]
Contents

1. Disclaimer & License
2. Introduction
3. Risk Management Framework (I): Outline
4. Modeling PE Fund Dynamics
5. Risk Management Framework (II): Risk Measures
6. Fund Structure & Fees
7. Extensive List of To-Dos
8. References
The specifics of PE present a challenge

PE funds have (at least) two key features that make risk management challenging:

- PE investments are long-term and illiquid:
The specifics of PE present a challenge

PE funds have (at least) two key features that make risk management challenging:

- **PE investments are long-term and illiquid:**
 - Fund lifetimes: $10 \leq T_L \leq 14$ years

† Thomas P. Harte & Axel Buchner

The PE Package

/53
PE funds have (at least) two key features that make risk management challenging:

- PE investments are **long-term** and **illiquid**:
 - Fund lifetimes: $10 \leq T_L \leq 14$ years
 - Secondary markets for PE positions are highly inefficient
The specifics of PE present a challenge

PE funds have (at least) two key features that make risk management challenging:

1. PE investments are **long-term** and **illiquid**:
 - Fund lifetimes: $10 \leq T_L \leq 14$ years
 - Secondary markets for PE positions are highly inefficient

2. PE investments exhibit **idiosyncratic dynamics**:
PE funds have (at least) two key features that make risk management challenging:

- **PE investments are long-term and illiquid:**
 - Fund lifetimes: $10 \leq T_L \leq 14$ years
 - Secondary markets for PE positions are highly inefficient

- **PE investments exhibit idiosyncratic dynamics:**
 - Capital drawdowns
The specifics of PE present a challenge

PE funds have (at least) two key features that make risk management challenging:

1. PE investments are **long-term** and **illiquid**:
 - Fund lifetimes: $10 \leq T_L \leq 14$ years
 - Secondary markets for PE positions are highly inefficient

2. PE investments exhibit **idiosyncratic dynamics**:
 - Capital drawdowns
 - Capital distributions
The specifics of PE present a challenge

PE funds have (at least) two key features that make risk management challenging:

1. **PE investments are long-term and illiquid:**
 - Fund lifetimes: $10 \leq T_L \leq 14$ years
 - Secondary markets for PE positions are highly inefficient

2. **PE investments exhibit idiosyncratic dynamics:**
 - Capital drawdowns
 - Capital distributions

The goal of the RM paper [12] is to develop the first comprehensive risk-management framework for PE fund investments that accounts for the idiosyncrasies of PE.
The specifics of PE present a challenge

PE funds have (at least) two key features that make risk management challenging:

1. PE investments are long-term and illiquid:
 - Fund lifetimes: $10 \leq T_L \leq 14$ years
 - Secondary markets for PE positions are highly inefficient

2. PE investments exhibit idiosyncratic dynamics:
 - Capital drawdowns
 - Capital distributions

The goal of the RM paper [12] is to develop the first comprehensive risk-management framework for PE fund investments that accounts for the idiosyncrasies of PE
A risk-management framework for PE fund investments must capture the three principal sources of risk to which PE positions are exposed:

- **Market Risk:**
 The risk of losses in the market prices of the portfolio companies held by a fund exposes investors to market risk.
Main Sources of Risk (I)

A risk-management framework for PE fund investments must capture the three principal sources of risk to which PE positions are exposed:

- **Market Risk:**
 The risk of losses in the market prices of the portfolio companies held by a fund exposes investors to market risk

- **Liquidity Risk:**
 The illiquidity of LP interests in the fund exposes investors to asset-liquidity risk associated with selling in the secondary markets at a discount to the fund’s net asset value ("NAV")
A risk-management framework for PE fund investments must capture the three principal sources of risk to which PE positions are exposed:

- **Market Risk:**
 The risk of losses in the market prices of the portfolio companies held by a fund exposes investors to market risk

- **Liquidity Risk:**
 The illiquidity of LP interests in the fund exposes investors to asset-liquidity risk associated with selling in the secondary markets at a discount to the fund’s net asset value (“NAV”)

- **Funding (i.e. Cash Flow) Risk:**
 The unpredictable timing of cash flows poses funding and cash-flow risks to investors: Capital commitments are contractually binding (defaulting on these payments can result in the loss of the entire LP interest)
A risk-management framework for PE fund investments must capture the three principal sources of risk to which PE positions are exposed:

- **Market Risk:**
 The risk of losses in the market prices of the portfolio companies held by a fund exposes investors to market risk.

- **Liquidity Risk:**
 The illiquidity of LP interests in the fund exposes investors to asset-liquidity risk associated with selling in the secondary markets at a discount to the fund’s net asset value (“NAV”).

- **Funding (i.e. Cash Flow) Risk:**
 The unpredictable timing of cash flows poses funding and cash-flow risks to investors: Capital commitments are contractually binding (defaulting on these payments can result in the loss of the entire LP interest).
A risk-management framework for PE fund investments must capture the three principal sources of risk to which PE positions are exposed, which we define as:

- **Market Risk:**
 Value at Risk ("VaR")

- **Liquidity Risk:**
 Liquidity Adjusted Value at Risk ("LVaR")

- **Funding (i.e. Cash Flow) Risk:**
 Cash Flow at Risk ("CFaR")
A risk-management framework for PE fund investments must capture the three principal sources of risk to which PE positions are exposed, which we define as:

- **Market Risk:**
 Value at Risk ("VaR")

- **Liquidity Risk:**
 Liquidity Adjusted Value at Risk ("LVaR")
A risk-management framework for PE fund investments must capture the three principal sources of risk to which PE positions are exposed, which we define as:

- **Market Risk:**
 Value at Risk (“VaR”)

- **Liquidity Risk:**
 Liquidity Adjusted Value at Risk (“LVaR”)

- **Funding (i.e. Cash Flow) Risk:**
 Cash Flow at Risk (“CFaR”)
A risk-management framework for PE fund investments must capture the three principal sources of risk to which PE positions are exposed, which we define as:

- **Market Risk:**
 Value at Risk (“VaR”)

- **Liquidity Risk:**
 Liquidity Adjusted Value at Risk (“LVaR”)

- **Funding (i.e. Cash Flow) Risk:**
 Cash Flow at Risk (“CFaR”)

Contents

1 Disclaimer & License

2 Introduction

3 Risk Management Framework (I): Outline

4 Modeling PE Fund Dynamics

5 Risk Management Framework (II): Risk Measures

6 Fund Structure & Fees

7 Extensive List of To-Dos

8 References
Let V_t denote the value of the fund at time t.

Assumption

The dynamics of the fund value, V_t, under the real-world probability measure P, can be described by the stochastic process $\{V_t, 0 \leq t \leq T\}$:

$$dV_t = V_t(\mu_V dt + \beta_V \sigma_M dB_M, t) + \sigma_\epsilon dB_\epsilon, t)$$

where $\mu_V > 0$ is the mean rate of return of the fund, and β_V is the market beta of the fund.

Thomas P. Harte & Axel Buchner

† The PE Package
Fund value

- Let V_t denote the value of the fund at time t
- Let D_t denote the cumulative capital drawdowns from the LPs up to time t
Fund value

- Let V_t denote the value of the fund at time t
- Let D_t denote the cumulative capital drawdowns from the LPs up to time t
- Let R_t denote the cumulative capital distributions to the LPs up to time t
Let V_t denote the value of the fund at time t

Let D_t denote the cumulative capital drawdowns from the LPs up to time t

Let R_t denote the cumulative capital distributions to the LPs up to time t

$B_{M,t}$ is a standard Brownian motion driving aggregate stock market returns, such that $r_{M,t} = \mu_M + \sigma_M dB_{M,t}$, where μ_M is the mean rate of return of the aggregate stock market (“the market”), and σ_M is the returns volatility of the market.
Let V_t denote the value of the fund at time t
Let D_t denote the cumulative capital drawdowns from the LPs up to time t
Let R_t denote the cumulative capital distributions to the LPs up to time t

$B_{M,t}$ is a standard Brownian motion driving aggregate stock market returns, such that $r_{M,t} = \mu_M + \sigma_M \, dB_{M,t}$, where μ_M is the mean rate of return of the aggregate stock market ("the market"), and σ_M is the returns volatility of the market.

$B_{\varepsilon,t}$ is a second Brownian motion, representing idiosyncratic shocks to the fund, where $dB_{M,t} \, dB_{\varepsilon,t} = 0$, the mean rate of return of the idiosyncratic shocks is zero, and σ_ε is the volatility of the idiosyncratic shocks.
Fund value

- Let V_t denote the value of the fund at time t
- Let D_t denote the cumulative capital drawdowns from the LPs up to time t
- Let R_t denote the cumulative capital distributions to the LPs up to time t
- $B_{M,t}$ is a standard Brownian motion driving aggregate stock market returns, such that $r_{M,t} = \mu_M + \sigma_M dB_{M,t}$, where μ_M is the mean rate of return of the aggregate stock market ("the market"), and σ_M is the returns volatility of the market
- $B_{\epsilon,t}$ is a second Brownian motion, representing idiosyncratic shocks to the fund, where $dB_{M,t} dB_{\epsilon,t} = 0$, the mean rate of return of the idiosyncratic shocks is zero, and σ_ϵ is the volatility of the idiosyncratic shocks

Assumption

The dynamics of the fund value, V_t, under the real-world probability measure \mathbb{P}, can be described by the stochastic process $\{V_t, 0 \leq t \leq T_L\}$:

$$dV_t = V_t(\mu_\nu dt + \beta_\nu \sigma_M dB_{M,t} + \sigma_\epsilon dB_{\epsilon,t}) + dD_t - dR_t,$$

where $\mu_\nu > 0$ is the mean rate of return of the fund, and β_ν is the market beta of the fund
Let V_t denote the value of the fund at time t

Let D_t denote the cumulative capital drawdowns from the LPs up to time t

Let R_t denote the cumulative capital distributions to the LPs up to time t

$B_{M,t}$ is a standard Brownian motion driving aggregate stock market returns, such that

$$r_{M,t} = \mu_M + \sigma_M \, dB_{M,t},$$

where μ_M is the mean rate of return of the aggregate stock market ("the market"), and σ_M is the returns volatility of the market.

$B_{\epsilon,t}$ is a second Brownian motion, representing idiosyncratic shocks to the fund, where

$$dB_{M,t} \, dB_{\epsilon,t} = 0,$$

the mean rate of return of the idiosyncratic shocks is zero, and σ_{ϵ} is the volatility of the idiosyncratic shocks.

Assumption

*The dynamics of the fund value, V_t, under the real-world probability measure \mathbb{P}, can be described by the stochastic process \(\{V_t, 0 \leq t \leq T_L\}:

\[dV_t = V_t(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_{\epsilon} dB_{\epsilon,t}) + dD_t - dR_t,\]

(1)

where $\mu_V > 0$ is the mean rate of return of the fund, and β_V is the market beta of the fund.*
Let I_0 be the capital available for investment, \(i.e. \ C_0 \) less fees. For simplicity we can at first assume that $I_0 = C_0$
Capital drawdowns

- Let I_0 be the capital available for investment, *i.e.* C_0 less fees. For simplicity we can at first assume that $I_0 = C_0$

Assumption

The dynamics of the cumulative capital drawdowns, D_t, can be described by the ordinary differential equation:

$$\begin{align*}
\text{d}D_t &= \delta_t(I_0 - D_t) \mathbf{1}_{\{0 \leq t \leq T\}} \text{d}t,
\end{align*}$$

where $\mathbf{1}_{\{\cdot\}}$ is an indicator function. The fund’s drawdown rate δ_t is assumed to follow a stochastic process $\{\delta_t, 0 \leq t \leq T\}$ given by:

$$\begin{align*}
\delta_t &= \delta + \sigma_{\delta} B_{\delta,t},
\end{align*}$$

where $\delta > 0$ is the mean of the drawdown rate, $\sigma_{\delta} > 0$ is the volatility of the drawdown rate; $B_{\delta,t}$ is a third standard Brownian motion for which it is assumed that $\text{d}B_{\delta,t} \text{d}B_{\delta,t} = \rho_{\delta} \text{d}t$, where ρ_{δ} is the correlation between drawdown rate and stock market returns, and $\text{d}B_{\delta,t} \text{d}B_{\varepsilon,t} = 0$. In order to avoid negative drawdown rates, we use $\delta_t^+ = \max(\delta_t, 0)$ in the model implementation.
Let I_0 be the capital available for investment, \(i.e. \ C_0 \) less fees. For simplicity we can at first assume that $I_0 = C_0$

Assumption

The dynamics of the cumulative capital drawdowns, D_t, can be described by the ordinary differential equation:

$$dD_t = \delta_t(I_0 - D_t)1_{\{0 \leq t \leq T_I\}}dt,$$

where $1_{\{\cdot\}}$ is an indicator function. The fund’s drawdown rate δ_t is assumed to follow a stochastic process \{\(\delta_t, 0 \leq t \leq T_I\}\} given by:

$$\delta_t = \delta + \sigma_{\delta}B_{\delta,t},$$

where $\delta > 0$ is the mean of the drawdown rate, $\sigma_{\delta} > 0$ is the volatility of the drawdown rate; $B_{\delta,t}$ is a third standard Brownian motion for which it is assumed that $dB_{\delta,t}dB_{M,t} = \rho_{\delta}dt$, where ρ_{δ} is the correlation between drawdown rate and stock market returns, and $dB_{\delta,t}dB_{\varepsilon,t} = 0$. In order to avoid negative drawdown rates, we use $\delta_t^+ = \max(\delta_t, 0)$ in the model implementation.
Capital distributions

Assumption

The dynamics of the cumulative capital distributions, R_t, can be described by:

$$dR_t = \nu_t V_t dt, \quad \text{for } t < T_L,$$

and

$$R_t = V_t 1_{\{t=T_L\}} + \int_0^t \nu_u V_u du, \quad \text{for } t \leq T_L \quad (4)$$

The fund’s distribution rate ν_t is assumed to follow a stochastic process $\{\nu_t, \ 0 \leq t \leq T_L\}$ given by:

$$\nu_t = \nu t + \sigma_{\nu} B_{\nu,t}, \quad (5)$$

where ν is the mean distribution rate, and $\sigma_{\nu} > 0$ is the volatility of the distribution rate; $B_{\nu,t}$ is a fourth standard Brownian motion for which it is assumed that $dB_{\nu,t} dB_{M,t} = \rho_{\nu} dt$, where ρ_{ν} is the correlation between the drawdown rate and stock market returns, and $dB_{\nu,t} dB_{\varepsilon,t} = 0$. In order to avoid negative distributions rates, we use $\nu^+_t = \max(\nu_t, 0)$ in the model implementation.
Contents

1. Disclaimer & License
2. Introduction
3. Risk Management Framework (I): Outline
4. Modeling PE Fund Dynamics
6. Fund Structure & Fees
7. Extensive List of To-Dos
8. References
Market risk: Value at Risk (“VaR”)

- VaR is always forward-looking: VaR is a forecast of the uncertainty in the P&L of a portfolio at the end of the holding period. If we let \(d_{t,h} \) be the discount factor with term \(t \) and tenor \(h \) and let \(P_t \) be the PE investor’s position at time \(t \), then the discounted forecast of the P&L at time \(t + h \) in present-value terms is:

\[
P&L_{t+h} = d_{t,h}P_{t+h} - P_t
\]
Market risk: Value at Risk ("VaR")

- VaR is always forward-looking: VaR is a forecast of the uncertainty in the P&L of a portfolio at the end of the holding period. If we let \(d_{t,h} \) be the discount factor with term \(t \) and tenor \(h \) and let \(P_t \) be the PE investor’s position at time \(t \), then the discounted forecast of the P&L at time \(t + h \) in present-value terms is:

\[
P&L_{t+h} = d_{t,h}P_{t+h} - P_t
\]

- The dynamics of the PE investor’s position, \(P_t \), at time \(t \) are given by:

\[
dP_t = dV_t + dC_t
\]

\[
= V_t(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_e dB_{\epsilon,t}) + dD_t - dR_t + C_t r_c dt - dD_t + dR_t
\]

\[
= V_t(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_e dB_{\epsilon,t}) + C_t r_c dt \tag{6}
\]
Market risk: Value at Risk ("VaR")

- VaR is always forward-looking: VaR is a forecast of the uncertainty in the P&L of a portfolio at the end of the holding period. If we let $d_{t,h}$ be the discount factor with term t and tenor h and let P_t be the PE investor’s position at time t, then the discounted forecast of the P&L at time $t + h$ in present-value terms is:

$$P&L_{t+h} = d_{t,h}P_{t+h} - P_t$$

- The dynamics of the PE investor’s position, P_t, at time t are given by:

$$dP_t = dV_t + dC_t$$

$$= V_t(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_\epsilon dB_{\epsilon,t}) + dD_t - dR_t + C_tr_c dt - dD_t + dR_t$$

$$= V_t(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_\epsilon dB_{\epsilon,t}) + C_tr_c dt$$ \hfill (6)
Market risk: Value at Risk ("VaR")

- VaR is always forward-looking: VaR is a forecast of the uncertainty in the P&L of a portfolio at the end of the holding period. If we let $d_{t,h}$ be the discount factor with term t and tenor h and let P_t be the PE investor’s position at time t, then the discounted forecast of the P&L at time $t + h$ in present-value terms is:

$$P&L_{t+h} = d_{t,h}P_{t+h} - P_t$$

- The dynamics of the PE investor’s position, P_t, at time t are given by:

$$dP_t = dV_t + dC_t$$

$$= V_t(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_e dB_{e,t}) + dD_t - dR_t + C_t r_c dt - dD_t + dR_t$$

$$= V_t(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_e dB_{e,t}) + C_t r_c dt$$

(6)

(We’ll give a definition of the dynamics of the investor’s cash position shortly when we define CFaR)
Market risk: Value at Risk ("VaR")

- VaR is always forward-looking: VaR is a forecast of the uncertainty in the P&L of a portfolio at the end of the holding period. If we let $d_{t,h}$ be the discount factor with term t and tenor h and let P_t be the PE investor’s position at time t, then the discounted forecast of the P&L at time $t + h$ in present-value terms is:

$$P&L_{t+h} = d_{t,h}P_{t+h} - P_t$$

- The dynamics of the PE investor’s position, P_t, at time t are given by:

$$dP_t = dV_t + dC_t$$

$$= V_t(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_\varepsilon dB_{\varepsilon,t}) + dD_t - dR_t + C_t r_c dt - dD_t + dR_t$$

$$= V_t(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_\varepsilon dB_{\varepsilon,t}) + C_t r_c dt$$

(6)

- The portfolio VaR at any time t, which we will denote by $\text{VaR}_{t,h}^{\alpha,\$}$ when expressed in dollar terms for a significance level $\alpha \in [0, 1]$ and a holding period h, is defined as:

$$\text{Pr}(P&L_{t+h} < q_h^{\alpha,\$}) = \alpha \iff \text{VaR}_{t,h}^{\alpha,\$} = -q_h^{\alpha,\$}$$
Market risk: Value at Risk ("VaR")

- VaR is always forward-looking: VaR is a forecast of the uncertainty in the P&L of a portfolio at the end of the holding period. If we let $d_{t,h}$ be the discount factor with term t and tenor h and let P_t be the PE investor’s position at time t, then the discounted forecast of the P&L at time $t + h$ in present-value terms is:

$$\text{P&L}_{t+h} = d_{t,h}P_{t+h} - P_t$$

- The dynamics of the PE investor’s position, P_t, at time t are given by:

$$dP_t = dV_t + dC_t$$

$$= V_t(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_\varepsilon dB_{\varepsilon,t}) + dD_t - dR_t + C_t r_c dt - dD_t + dR_t$$

$$= V_t(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_\varepsilon dB_{\varepsilon,t}) + C_t r_c dt$$

(6)

- The portfolio VaR at any time t, which we will denote by $\text{VaR}_{t,h}^{\alpha,\$}$ when expressed in dollar terms for a significance level $\alpha \in [0, 1]$ and a holding period h, is defined as:

$$\Pr(\text{P&L}_{t+h} < q_h^{\alpha,\$}) = \alpha \iff \text{VaR}_{t,h}^{\alpha,\$} = -q_h^{\alpha,\$}$$
Liquidity risk: Liquidity Adjusted Value at Risk ("LVaR")

Figure: Median Discount (+) / Premium (-) to fund NAVs by fund type, 2004–2013.

Source: Preqin Secondary Market Monitor
Liquidity risk: Liquidity Adjusted Value at Risk ("LVaR")

- The point of LVaR is to incorporate the secondary-market discount rate as an exogenous liquidity risk in the calculation of VaR.
Liquidity risk: Liquidity Adjusted Value at Risk ("LVaR")

- The point of LVaR is to incorporate the secondary-market discount rate as an exogenous liquidity risk in the calculation of VaR

Assumption

The dynamics of the secondary-market discount rate π_t are assumed to follow a stochastic process given by:

$$d\pi_t = \kappa_\pi (\theta_\pi - \pi_t)dt + \sigma_\pi dB_{\pi,t},$$

where $\theta_\pi > 0$ is the long-run mean of the discount rate, $\kappa_\pi > 0$ is the rate of reversion to this mean, and $\sigma_\pi > 0$ reflects the volatility of the discount rate. $B_{\pi,t}$ is a fifth standard Brownian motion for which it is assumed that $dB_{\pi,t}dB_{M,t} = \rho_\pi dt$, where ρ_π is the correlation between drawdown rate and stock market returns, and $dB_{\pi,t}dB_{\varepsilon,t} = 0$.

$$P&L(L_{t+h}) = (1 - \pi_{t+h})V_{t+h} + C_{t+h} - P_t,$$

with π_{t+h} being the forecast of the secondary-market discount for the fund at time $t+h$.

\[8\]
The point of LVaR is to incorporate the secondary-market discount rate as an exogenous liquidity risk in the calculation of VaR.

Assumption

The dynamics of the secondary-market discount rate \(\pi_t \) are assumed to follow a stochastic process given by:

\[
d\pi_t = \kappa_\pi (\theta_\pi - \pi_t) dt + \sigma_\pi dB_{\pi,t},
\]

where \(\theta_\pi > 0 \) is the long-run mean of the discount rate, \(\kappa_\pi > 0 \) is the rate of reversion to this mean, and \(\sigma_\pi > 0 \) reflects the volatility of the discount rate. \(B_{\pi,t} \) is a fifth standard Brownian motion for which it is assumed that \(dB_{\pi,t}dB_{M,t} = \rho_\pi dt \), where \(\rho_\pi \) is the correlation between drawdown rate and stock market returns, and \(dB_{\pi,t}dB_{\varepsilon,t} = 0 \).

The LVaR\(_{t,h}^{\alpha,\$} \) is defined by:

\[
\Pr(P&L^{(L)}_{t+h} < q^{(L),\alpha,\$}_h) = \alpha \iff LVaR_{t,h}^{\alpha,\$} = -q^{(L),\alpha,\$}_h
\]

where \(P&L^{(L)}_{t+h} \) is the liquidity-adjusted P&L forecast of the investor’s position in the fund for time \(t + h \):

\[
P&L^{(L)}_{t+h} = ((1 - \pi_{t+h})V_{t+h} + C_{t+h}) - P_t,
\]

with \(\pi_{t+h} \) being the forecast of the secondary-market discount for the fund at time \(t + h \).
Liquidity risk: Liquidity Adjusted Value at Risk ("LVaR")

- The point of LVaR is to incorporate the secondary-market discount rate as an exogenous liquidity risk in the calculation of VaR.

Assumption

The dynamics of the secondary-market discount rate π_t are assumed to follow a stochastic process given by:

$$d\pi_t = \kappa_\pi (\theta_\pi - \pi_t)dt + \sigma_\pi dB_{\pi,t}, \quad (7)$$

where $\theta_\pi > 0$ is the long-run mean of the discount rate, $\kappa_\pi > 0$ is the rate of reversion to this mean, and $\sigma_\pi > 0$ reflects the volatility of the discount rate. $B_{\pi,t}$ is a fifth standard Brownian motion for which it is assumed that $dB_{\pi,t} dB_{M,t} = \rho_\pi dt$, where ρ_π is the correlation between drawdown rate and stock market returns, and $dB_{\pi,t} dB_{\epsilon,t} = 0$.

- The LVaR$_{t,h}^{\alpha,\$}$ is defined by:

$$\Pr\left(P&L_{t+h}^{(L)} < q_{h}^{(L),\alpha,\$}\right) = \alpha \iff \text{LVaR}_{t,h}^{\alpha,\$} = -q_{h}^{(L),\alpha,\$} \quad (8)$$

where $P&L_{t+h}^{(L)}$ is the liquidity-adjusted P&L forecast of the investor’s position in the fund for time $t + h$:

$$P&L_{t+h}^{(L)} = ((1 - \pi_{t+h})V_{t+h} + C_{t+h}) - P_t, \quad (9)$$

with π_{t+h} being the forecast of the secondary-market discount for the fund at time $t + h$.
The risk measure CFaR is defined as the change (or possibly loss) in the investor’s cash position, C_t, which is exceeded with some given probability α, over a given time horizon h.

\[CFaR_{\alpha, t, h} = -q(C_t, \alpha, h) \]
The risk measure CFaR is defined as the change (or possibly loss) in the investor’s cash position, C_t, which is exceeded with some given probability α, over a given time horizon h.

Assumption

The dynamics of the investor’s cash position are given by:

$$dC_t = C_t r_c dt - dD_t + dR_t$$

Note: r_c is the rate of return on cash.
Cash-flow risk: Cash Flow at Risk ("CFaR")

- The risk measure CFaR is defined as the change (or possibly loss) in the investor’s cash position, \(C_t \), which is exceeded with some given probability \(\alpha \), over a given time horizon \(h \).

Assumption

The dynamics of the investor’s cash position are given by:

\[
dC_t = C_t r_c dt - dD_t + dR_t
\]

(10)

where \(r_c \) is rate of return on cash

- The CFaR\(_{\alpha, t, h}^{\alpha, \$}\) is defined by:

\[
\Pr\left(C_{t+h} - C_t < q_{\alpha, t, h}^{(C, \alpha, \$)} \right) = \alpha \iff \text{CFaR}_{\alpha, t, h}^{\alpha, \$} = -q_{\alpha, t, h}^{(C, \alpha, \$)}
\]

(11)
The risk measure CFaR is defined as the change (or possibly loss) in the investor’s cash position, C_t, which is exceeded with some given probability α, over a given time horizon h.

Assumption

The dynamics of the investor’s cash position are given by:

$$dC_t = C_tr_c dt - dD_t + dR_t$$ \hspace{1cm} (10)

where r_c is rate of return on cash

The CFaR$^\alpha_\$ t,h is defined by:

$$\Pr(C_{t+h} - C_t < q^{(C),\alpha,\$}_h) = \alpha \iff \text{CFaR}_t^{\alpha,\$} = -q^{(C),\alpha,\$}_h$$ \hspace{1cm} (11)
Cash-flow risk: Cash Flow at Risk ("CFaR")

- The risk measure CFaR is defined as the change (or possibly loss) in the investor’s cash position, \(C_t \), which is exceeded with some given probability \(\alpha \), over a given time horizon \(h \).

Assumption

The dynamics of the investor’s cash position are given by:

\[
dC_t = C_t r_c dt - dD_t + dR_t
\]

where \(r_c \) is rate of return on cash.

- The CFaR\(_{t,h}^{\alpha,\$}\) is defined by:

\[
Pr\left(C_{t+h} - C_t < q^{(C),\alpha,\$}_h \right) = \alpha \iff CFaR_{t,h}^{\alpha,\$} = -q^{(C),\alpha,\$}_h
\]

\(\text{(11)} \)
Calibrated model parameters

Table: Summary of baseline parameters used in illustration of risk-management model

Note: All model parameters are stated as annualized units, except where indicated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life of the PE fund investment (years)</td>
<td>T_L</td>
<td>12</td>
</tr>
<tr>
<td>Simulation frequency (years)</td>
<td>dt</td>
<td>1/4</td>
</tr>
<tr>
<td>Committed capital (US dollars)</td>
<td>C_0</td>
<td>100</td>
</tr>
<tr>
<td>Risk-free rate</td>
<td>r_f</td>
<td>0.05</td>
</tr>
<tr>
<td>Return on cash positions</td>
<td>r_c</td>
<td>0</td>
</tr>
<tr>
<td>Expected return of stock market</td>
<td>μ_M</td>
<td>0.11</td>
</tr>
<tr>
<td>Volatility of stock market returns</td>
<td>σ_M</td>
<td>0.15</td>
</tr>
<tr>
<td>Alpha of PE funds</td>
<td>α</td>
<td>0.04</td>
</tr>
<tr>
<td>Market beta of PE funds</td>
<td>β_M</td>
<td>1.30</td>
</tr>
<tr>
<td>Idiosyncratic volatility of PE fund returns</td>
<td>σ_ε</td>
<td>0.35</td>
</tr>
<tr>
<td>Drawdown rate of PE funds</td>
<td>δ</td>
<td>0.41</td>
</tr>
<tr>
<td>Volatility of the drawdown rate</td>
<td>σ_δ</td>
<td>0.21</td>
</tr>
<tr>
<td>Correlation between drawdown rate and stock market returns</td>
<td>ρ_δ</td>
<td>0.50</td>
</tr>
<tr>
<td>Average distribution rate</td>
<td>ν</td>
<td>0.08</td>
</tr>
<tr>
<td>Volatility of the distribution rate</td>
<td>σ_ν</td>
<td>0.11</td>
</tr>
<tr>
<td>Correlation between distribution rate and stock market returns</td>
<td>ρ_ν</td>
<td>0.80</td>
</tr>
<tr>
<td>Long-run mean of secondary market discounts</td>
<td>θ_π</td>
<td>0.16</td>
</tr>
<tr>
<td>Mean-reversion speed of secondary market discounts</td>
<td>κ_π</td>
<td>0.42</td>
</tr>
<tr>
<td>Volatility of secondary market discounts</td>
<td>σ_π</td>
<td>0.16</td>
</tr>
<tr>
<td>Initial secondary market discount</td>
<td>π_0</td>
<td>θ_π</td>
</tr>
<tr>
<td>Correlation between discount rate and stock market returns</td>
<td>ρ_π</td>
<td>-0.60</td>
</tr>
</tbody>
</table>
It’s Monte Carlo time...
Figure: Cumulative capital drawdowns (left) and cumulative capital distributions (right). Solid lines represent Monte Carlo estimates of the average and dotted lines represent the 10th & 90th quantiles over 500,000 simulations.
Figure: Fund values (left) and cumulative net fund cash flows (right). Solid lines represent Monte Carlo estimates of the average and dotted lines represent the 10th & 90th quantiles over 500,000 simulations.
Figure: VaR dynamics over the fund lifecycle: (left) VaR at fund initiation, $\text{VaR}^{\alpha,0}_{0,h}$, plotted as a function of the time horizon h; (right) quarterly VaR, i.e., $\text{VaR}^{\alpha,0.25}_{t,0.25}$, plotted as a function of time t. The thickest line represents the Monte Carlo estimate of the 1% VaR over 500,000 simulations (also shown are the 5% VaR and the 10% VaR).
Figure: LVaR dynamics over the fund lifecycle: (left) LVaR at fund initiation, $\text{LVaR}^{\alpha,h}_{0}$, plotted as a function of time horizon h; (right) quarterly LVaR, *i.e.* $\text{LVaR}^{\alpha,0.25}_{t}$, plotted as a function of time t. The thickest line represents the Monte Carlo estimate of the 1% LVaR over 500,000 simulations (also shown are the 5% LVaR and the 10% LVaR)
Figure: CFaR dynamics over the fund lifecycle: (left) CFaR at fund initiation, $\text{CFaR}_{0,h}^{\alpha,\$}$, plotted as a function of time horizon h; (right) quarterly CFaR, i.e., $\text{CFaR}_{t,0.25}^{\alpha,\$}$, plotted as a function of time t. The thickest line represents the Monte Carlo estimate of the 1% CFaR over 500,000 simulations (also shown are the 5% CFaR and the 10% CFaR).
GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”.
2. A (typically fixed) fee called the “management fee”. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (ample data to support vanilla flat fees, not so the more exotic combinations).
3. A fixed fee for setting up the fund (anecdotal evidence: 1 usually a flat fee—up to 1% of the committed capital?).
4. Fees charged to the portfolio companies (Leveraged Buyout Funds):
 1. transaction fees (anecdotal evidence: 1.37%)
 2. monitoring fees (anecdotal evidence: 2%)

¹ Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, *Review of Financial Studies*, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.
² *ibid.* p. 2319, *et seq.*
³ *ibid.* p. 2319, *et seq.*
Manager compensation

GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”.
 Carry ranges from 0% to 50%, but sharply peaked around 20%
 (ample data to support)

Manager compensation

GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support)

2. A (typically fixed) fee called the “management fee”.

1 Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, Review of Financial Studies, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.

2 ibid. p. 2319, et seq.

3 ibid. p. 2319, et seq.
GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”.
 Carry ranges from 0% to 50%, but sharply peaked around 20%
 (ample data to support)

2. A (typically fixed) fee called the “management fee”.
 The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it
 is sharply peaked around 2%

1 Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, *Review of Financial Studies*, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.
2 *ibid.* p. 2319, *et seq.*
3 *ibid.* p. 2319, *et seq.*
Manager compensation

GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support)

2. A (typically fixed) fee called the “management fee”. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (Ample data to support vanilla flat fees, not so the more exotic combinations)

1 Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, *Review of Financial Studies*, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.

2 *ibid.* p. 2319, *et seq.*

3 *ibid.* p. 2319, *et seq.*
Manager compensation

GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support)

2. A (typically fixed) fee called the “management fee”. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (Ample data to support vanilla flat fees, not so the more exotic combinations)

1 Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, Review of Financial Studies, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.

2 ibid. p. 2319, et seq.

3 ibid. p. 2319, et seq.
Manager compensation

GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support)

2. A (typically fixed) fee called the “management fee”. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (Ample data to support vanilla flat fees, not so the more exotic combinations)

3. A fixed fee for setting up the fund

1 Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, *Review of Financial Studies*, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.

2 *ibid.* p. 2319, *et seq.*

3 *ibid.* p. 2319, *et seq.*
Manager compensation

GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support)

2. A (typically fixed) fee called the “management fee”. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (Ample data to support vanilla flat fees, not so the more exotic combinations)

3. A fixed fee for setting up the fund (anecdotal evidence: usually a flat fee—up to 1% of the committed capital?)

1. Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, Review of Financial Studies, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.

2. Ibid. p. 2319, et seq.

3. Ibid. p. 2319, et seq.
GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support).

2. A (typically fixed) fee called the “management fee”. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (Ample data to support vanilla flat fees, not so the more exotic combinations).

3. A fixed fee for setting up the fund (anecdotal evidence: usually a flat fee—up to 1% of the committed capital?).

4. Fees charged to the portfolio companies (Leveraged Buyout Funds):

1. Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, Review of Financial Studies, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.

2. ibid. p. 2319, et seq.

3. ibid. p. 2319, et seq.
GPs typically receive three types of compensation for managing the investments:

1. **A performance-related component called “carried interest” or simply “carry”**. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support)

2. **A (typically fixed) fee called the “management fee”**. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (Ample data to support vanilla flat fees, not so the more exotic combinations)

3. **A fixed fee for setting up the fund** (anecdotal evidence: usually a flat fee—up to 1% of the committed capital?)

4. **Fees charged to the portfolio companies (Leveraged Buyout Funds):**
 - transaction fees

GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support)

2. A (typically fixed) fee called the “management fee”. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (Ample data to support vanilla flat fees, not so the more exotic combinations)

3. A fixed fee for setting up the fund (anecdotal evidence: usually a flat fee—up to 1% of the committed capital?)

4. Fees charged to the portfolio companies (Leveraged Buyout Funds):
 - transaction fees (anecdotal evidence: 1.37%)

GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support)

2. A (typically fixed) fee called the “management fee”. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (Ample data to support vanilla flat fees, not so the more exotic combinations)

3. A fixed fee for setting up the fund (anecdotal evidence: usually a flat fee—up to 1% of the committed capital?)

4. Fees charged to the portfolio companies (Leveraged Buyout Funds):
 - transaction fees (anecdotal evidence: 1.37%)
 - monitoring fees

1 Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, *Review of Financial Studies*, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.

2 *ibid.* p. 2319, *et seq.*

3 *ibid.* p. 2319, *et seq.*
GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support)

2. A (typically fixed) fee called the “management fee”. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (Ample data to support vanilla flat fees, not so the more exotic combinations)

3. A fixed fee for setting up the fund (anecdotal evidence: usually a flat fee—up to 1% of the committed capital?)

4. Fees charged to the portfolio companies (Leveraged Buyout Funds):
 - transaction fees (anecdotal evidence: 1.37%)
 - monitoring fees (anecdotal evidence: 2%)

1 Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, *Review of Financial Studies*, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.

2 *ibid.* p. 2319, *et seq.*

3 *ibid.* p. 2319, *et seq.*
GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support)

2. A (typically fixed) fee called the “management fee”. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (Ample data to support vanilla flat fees, not so the more exotic combinations)

3. A fixed fee for setting up the fund (anecdotal evidence: 1 usually a flat fee—up to 1% of the committed capital?)

4. Fees charged to the portfolio companies (Leveraged Buyout Funds):
 - transaction fees (anecdotal evidence: 1.37%)\(^2\)
 - monitoring fees (anecdotal evidence: 2%)\(^3\)

\(^1\) Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, *Review of Financial Studies*, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.

\(^2\) *ibid.* p. 2319, *et seq.*

\(^3\) *ibid.* p. 2319, *et seq.*
Management fees

- The management fee is levied against a basis: this is usually either the committed capital, C_0, or the net invested capital (“NIC”), and it is one of four different types that is specified in the limited partnership agreement (“LPA”):

5 *ibid.* p. 2315, *et seq.*
The management fee is levied against a basis: this is usually either the committed capital, C_0, or the net invested capital (“NIC”), and it is one of four different types that is specified in the limited partnership agreement (“LPA”):

1. flat fee
2. tapered fee: tapers after the investment period, $T_I < t \leq T_L$
3. change basis to NIC after investment period with flat fee
4. change basis to NIC after investment period with tapered fee

5 *ibid.* p. 2315, *et seq.*
The management fee is levied against a basis: this is usually either the committed capital, C_0, or the net invested capital (“NIC”), and it is one of four different types that is specified in the limited partnership agreement (“LPA”):

1. flat fee
2. tapered fee: tapers after the investment period, $T_I < t \leq T_L$
3. change basis to NIC after investment period with flat fee
4. change basis to NIC after investment period with tapered fee

Let MF_t denote the cumulative management fees up to some time $t \in [0, T_L]$.

5 *ibid.* p. 2315, *et seq.*
Management fees

The management fee is levied against a basis: this is usually either the committed capital, C_0, or the net invested capital ("NIC"), and it is one of four different types that is specified in the limited partnership agreement ("LPA"):

1. flat fee
2. tapered fee: tapers after the investment period, $T_I < t \leq T_L$
3. change basis to NIC after investment period with flat fee
4. change basis to NIC after investment period with tapered fee

Let MF_t denote the cumulative management fees up to some time $t \in [0, T_L]$.

Fixed Management Fees: If management fees are defined as a percentage c_{MF} of the committed capital C_0 and are paid continuously, the dynamics are given by:

$$dMF_t = c_{MF}C_0dt$$ (12)

5 *ibid.* p. 2315, *et seq.*
Management fees

The management fee is levied against a basis: this is usually either the committed capital, C_0, or the net invested capital ("NIC"), and it is one of four different types that is specified in the limited partnership agreement ("LPA"):

1. flat fee
2. tapered fee: tapers after the investment period, $T_I < t \leq T_L$
3. change basis to NIC after investment period with flat fee
4. change basis to NIC after investment period with tapered fee

Let MF_t denote the cumulative management fees up to some time $t \in [0, T_L]$.

Fixed Management Fees: If management fees are defined as a percentage c_{MF} of the committed capital C_0 and are paid continuously, the dynamics are given by:

$$dMF_t = c_{MF}C_0 dt$$ \hspace{1cm} (12)

Management Fees with Change in Basis: Latterly, tapered management fees appear to be gaining in popularity. The tapering typically begins after the investment period, i.e. for $T_I < t \leq T_L$, and reflects the fact that less time is required by the GP in managing the activities of the portfolio companies. Many funds change the fee basis from committed capital (during the commitment period) to NIC capital (after the commitment period).

5 *ibid*. p. 2315, *et seq.*
Management fees

- The management fee is levied against a basis: this is usually either the committed capital, C_0, or the net invested capital ("NIC"),\(^4\) and it is one of four different types that is specified in the limited partnership agreement ("LPA"):
 1. flat fee
 2. tapered fee: tapers after the investment period, $T_I < t \leq T_L$
 3. change basis to NIC after investment period with flat fee\(^5\)
 4. change basis to NIC after investment period with tapered fee

- Let MF_t denote the cumulative management fees up to some time $t \in [0, T_L]$.

- **Fixed Management Fees:** If management fees are defined as a percentage c_{MF} of the committed capital C_0 and are paid continuously, the dynamics are given by:

 \[
 dMF_t = c_{MF} C_0 dt \tag{12}
 \]

- **Management Fees with Change in Basis:** Latterly, tapered management fees appear to be gaining in popularity. The tapering typically begins after the investment period, \textit{i.e.} for $T_I < t \leq T_L$, and reflects the fact that less time is required by the GP in managing the activities of the portfolio companies. Many funds change the fee basis from committed capital (during the commitment period) to NIC capital (after the commitment period).

\(^4\) Invested capital minus the cost basis of exited investments, \textit{ibid.} p. 2315, \textit{et seq.}

\(^5\) \textit{ibid.} p. 2315, \textit{et seq.}
Management fees: basis change to NIC requires *ex ante* computation

- If *ab initio* the basis for management-fee calculation is agreed to change from committed capital, C_0, for $0 \leq t \leq T_I$, to NIC for $T_I < t \leq T_L$, then how do GPs determine I_C, the capital available for investment, for $t \leq T_I$? Is it specified in the LPA?

Management fees: basis change to NIC requires *ex ante* computation

- If *ab initio* the basis for management-fee calculation is agreed to change from committed capital, C_0, for $0 \leq t \leq T_I$, to NIC for $T_I < t \leq T_L$, then how do GPs determine I_C, the capital available for investment, for $t \leq T_I$? Is it specified in the LPA?

- We use an iterative algorithm to arrive at the NIC (convergence is rapid):

\[\begin{align*}
1 & \text{ Set the initial guess for NIC to } C_0 \\
2 & \text{ Subtract the fixed management fees applicable for } t \leq T_I, \text{ which we know at } t = 0 \text{ to follow } \\
3 & \text{ the value of NIC for } t = T_I \text{ is then initialized to } C_0 - MF_{T_I} \\
4 & \text{ The dynamics of management fees for } T_I < t \leq T_L \text{ are assumed to follow: } \\
5 & \text{ We can solve for the invested capital } I_C, \text{ by noting that at } t = 0 \text{ it must be the case that } \\
6 & \text{ As Metrick & Yasuda suggest, *ibid.* p. 2309, *et seq.*}
\end{align*} \]
If *ab initio* the basis for management-fee calculation is agreed to change from committed capital, C_0, for $0 \leq t \leq T_I$, to NIC for $T_I < t \leq T_L$, then how do GPs determine I_C, the capital available for investment, for $t \leq T_I$? Is it specified in the LPA?

We use an iterative algorithm to arrive at the NIC (convergence is rapid):

1. Set the initial guess for NIC to C_0

Management fees: basis change to NIC requires *ex ante* computation

- If *ab initio* the basis for management-fee calculation is agreed to change from committed capital, C_0, for $0 \leq t \leq T_I$, to NIC for $T_I < t \leq T_L$, then how do GPs determine I_C, the capital available for investment, for $t \leq T_I$? Is it specified in the LPA?

- We use an iterative algorithm to arrive at the NIC (convergence is rapid):
 1. Set the initial guess for NIC to C_0
 2. Subtract the fixed management fees applicable for $t \leq T_I$, which we know at $t = 0$ to follow

$$dMF_t = c_{MF} C_0 dt \; 1_{0 \leq t \leq T_I}$$

(13)

the value of NIC$_t$ for $t = T_I$ is then initialized to $C_0 - MF_{T_I}$

If *ab initio* the basis for management-fee calculation is agreed to change from committed capital, C_0, for $0 \leq t \leq T_I$, to NIC for $T_I < t \leq T_L$, then how do GPs determine I_C, the capital available for investment, for $t \leq T_I$? Is it specified in the LPA?

We use an iterative algorithm to arrive at the NIC (convergence is rapid):

1. Set the initial guess for NIC to C_0
2. Subtract the fixed management fees applicable for $t \leq T_I$, which we know at $t = 0$ to follow

$$dMF_t = c_{MF}C_0 dt 1_{0 \leq t \leq T_I}$$

(13)

the value of NIC$_t$ for $t = T_I$ is then initialized to $C_0 - MF_{T_I}$

3. The dynamics of management fees for $T_I < t \leq T_L$ are assumed to follow:

$$dMF_t = c_{MF}NIC_t dt 1_{T_I < t \leq T_L}$$

(14)

If *ab initio* the basis for management-fee calculation is agreed to change from committed capital, C_0, for $0 \leq t \leq T_I$, to NIC for $T_I < t \leq T_L$, then how do GPs determine I_C, the capital available for investment, for $t \leq T_I$? Is it specified in the LPA?

We use an iterative algorithm to arrive at the NIC (convergence is rapid):

1. Set the initial guess for NIC to C_0
2. Subtract the fixed management fees applicable for $t \leq T_I$, which we know at $t = 0$ to follow
 \[\text{dMF}_t = c_{MF} C_0 \text{d}t \quad 0 \leq t \leq T_I \]
 (13)

 the value of NIC$_t$ for $t = T_I$ is then initialized to $C_0 - \text{MF}_{T_I}$
3. The dynamics of management fees for $T_I < t \leq T_L$ are assumed to follow:
 \[\text{dMF}_t = c_{MF} \text{NIC}_t \text{d}t \quad 1 \leq t \leq T_L \]
 (14)

4. The fund’s distribution rate, ν_t, is assumed to follow a stochastic process $\{\nu_t, \ 0 \leq t \leq T_L\}$ given by $\nu_t = \nu t + \sigma_\nu B_{\nu,t}$, as per Equation 5, and this rate is applied to the NIC to give its dynamics as:
 \[\text{dNIC}_t = \nu_t \text{NIC}_t \text{d}t \]
 (15)

Management fees: basis change to NIC requires *ex ante* computation

- If *ab initio* the basis for management-fee calculation is agreed to change from committed capital, \(C_0 \), for \(0 \leq t \leq T_I \), to NIC for \(T_I < t \leq T_L \), then how do GPs determine \(I_C \), the capital available for investment, for \(t \leq T_I \)? Is it specified in the LPA?

- We use an iterative algorithm to arrive at the NIC (convergence is rapid):
 1. Set the initial guess for NIC to \(C_0 \)
 2. Subtract the fixed management fees applicable for \(t \leq T_I \), which we know at \(t = 0 \) to follow
 \[
 dMF_t = c_MF C_0 dt \quad 0 \leq t \leq T_I
 \] (13)
 the value of NIC\(_t \) for \(t = T_I \) is then initialized to \(C_0 - MF_{T_I} \)
 3. The dynamics of management fees for \(T_I < t \leq T_L \) are assumed to follow:
 \[
 dMF_t = c_MF NIC_t dt \quad T_I < t \leq T_L
 \] (14)

- The fund’s distribution rate, \(\nu_t \), is assumed to follow a stochastic process \(\{\nu_t, 0 \leq t \leq T_L\} \) given by \(\nu_t = \nu t + \sigma_{\nu} B_{\nu,t} \), as per Equation 5, and this rate is applied to the NIC to give its dynamics as:
 \[
 dNIC_t = \nu_t NIC_t dt
 \] (15)

- Finally, we can solve for the invested capital \(I_C \), by noting\(^6\) that at \(t = 0 \) it must be the case that \(I_C = C_0 - NPV(MF_{T_I}) - NPV(MF_{T_L}) \), where the last term can be expressed as \(x \times I_C \) for some fraction \(x \)

\(^6\)As Metrick & Yasuda suggest, *ibid.* p. 2309, *et seq.*
Management fees: basis change to NIC requires *ex ante* computation

- If *ab initio* the basis for management-fee calculation is agreed to change from committed capital, C_0, for $0 \leq t \leq T_I$, to NIC for $T_I < t \leq T_L$, then how do GPs determine I_C, the capital available for investment, for $t \leq T_I$? Is it specified in the LPA?

- We use an iterative algorithm to arrive at the NIC (convergence is rapid):
 1. Set the initial guess for NIC to C_0
 2. Subtract the fixed management fees applicable for $t \leq T_I$, which we know at $t = 0$ to follow

$$dMF_t = c_{MF}C_0 dt\ 1_{0\leq t \leq T_I}$$

(13)

the value of NIC$_t$ for $t = T_I$ is then initialized to $C_0 - MF_{T_I}$

3. The dynamics of management fees for $T_I < t \leq T_L$ are assumed to follow:

$$dMF_t = c_{MF}NIC_t dt\ 1_{T_I < t \leq T_L}$$

(14)

4. The fund’s distribution rate, ν_t, is assumed to follow a stochastic process $\{\nu_t,\ 0 \leq t \leq T_L\}$ given by $\nu_t = \nu t + \sigma_\nu B_{\nu,t}$, as per Equation 5, and this rate is applied to the NIC to give its dynamics as:

$$dNIC_t = \nu_t NIC_t dt$$

(15)

5. Finally, we can solve for the invested capital I_C, by noting\(^6\) that at $t = 0$ it must be the case that $I_C = C_0 - NPV(MF_{T_I}) - NPV(MF_{T_L})$, where the last term can be expressed as $x \times I_C$ for some fraction x

\(^6\) As Metrick & Yasuda suggest, *ibid.* p. 2309, *et seq.*
Let CI_t denote the cumulative carried interest up to some time $t \in [0, T_L]$.

Carried interest (I)

- Let CI_t denote the cumulative carried interest up to some time $t \in [0, T_L]$.

Catch-up provision: Most LPAs that contain a hurdle rate also include a provision that provides the GPs with a greater share of the profits once the hurdle rate has been paid and until the carry level has been reached.
Let CI_t denote the cumulative carried interest up to some time $t \in [0, T_L]$.

Carried Interest: Let the carried interest level be given by c_{CI} and let h denote the hurdle rate. The dynamics of carried interest are given by:

$$dCI_t = c_{CI} \max\left\{dR_t - dD_t - dMF_t, \ 0\right\} \mathbf{1}_{\{\text{IRR}_t > h\}}$$

where $\mathbf{1}_{\{\text{IRR}_t > h\}}$ indicates that carried interest is only payable at time t if the internal rate of return of the fund at t, IRR_t, exceeds the hurdle rate h.

Catch-up provision: Most LPAs that contain a hurdle rate also include a provision that provides the GPs with a greater share of the profits once the hurdle rate has been paid and until the carry level has been reached.
Let CI_t denote the cumulative carried interest up to some time $t \in [0, T_L]$

- **Carried Interest**: Let the carried interest level be given by c_{CI} and let h denote the hurdle rate. The dynamics of carried interest are given by:

$$dCI_t = c_{CI} \max \left(\underbrace{dR_t - dD_t - dMF_t}_{\text{net cash flow}} , \ 0 \right) 1_{\{\text{IRR}_t > h\}}$$

where $1_{\{\text{IRR}_t > h\}}$ indicates that carried interest is only payable at time t if the internal rate of return of the fund at t, IRR_t, exceeds the hurdle rate h

- **Catch-up provision**: Most LPAs that contain a hurdle rate also include a provision that provides the GPs with a greater share of the profits once the hurdle rate has been paid and until the carry level has been reached
Carried interest (I)

Let CI_t denote the cumulative carried interest up to some time $t \in [0, T_L]$

Carried Interest: Let the carried interest level be given by c_{CI} and let h denote the hurdle rate. The dynamics of carried interest are given by:

$$dCI_t = c_{CI} \max \left\{ \left(dR_t - dD_t - dMF_t \right), 0 \right\} 1_{\{\text{IRR}_t > h\}}$$

where $1_{\{\text{IRR}_t > h\}}$ indicates that carried interest is only payable at time t if the internal rate of return of the fund at t, IRR_t, exceeds the hurdle rate h

Catch-up provision: Most LPAs that contain a hurdle rate also include a provision that provides the GPs with a greater share of the profits once the hurdle rate has been paid and until the carry level has been reached
Carried Interest (II)

- **Carried interest with catch-up**: If the carried interest is paid with a 100% catch-up provision, then its dynamics are given by:

\[
\begin{align*}
\text{dCI}_t &= \begin{cases}
 c_{\text{CI}} \max \{d\text{NCF}_t, 0\} 1_{\{\text{IRR}_t > h\}}, & \text{if } \frac{\text{CI}_t}{R_t - C_0} = c_{\text{CI}} \\
 \min \{c_{\text{CI}}(R_t - C_0) - \text{CI}_t, d\text{NCF}_t\} 1_{\{\text{IRR}_t > h\}}, & \text{if } \frac{\text{CI}_t}{R_t - C_0} < c_{\text{CI}}
\end{cases}
\end{align*}
\]

where \(d\text{NCF}_t = dR_t - dD_t - d\text{MF}_t\)

\[c_{\text{CI}} \geq \frac{1}{R_t - C_0}\]
Table: Carried Interest Calculation

This table illustrates the carried interest calculation for a $100M fund with a carried interest level of 20 percent, a hurdle rate of 8 percent, and a lifetime of ten years. The calculation is shown for a fund with no catch-up clause and fund with a catch-up clause of 100 percent.

<table>
<thead>
<tr>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Flows</td>
<td>-50</td>
<td>-30</td>
<td>-10</td>
<td>-10</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>20</td>
<td>150</td>
</tr>
<tr>
<td>IRR (in % p.a.)</td>
<td>-100</td>
<td>-100</td>
<td>-100</td>
<td>-100</td>
<td>-33</td>
<td>-6</td>
<td>8</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Carried Interest (No Catch-Up)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>Carried Interest (With Catch-Up)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>8</td>
<td>4</td>
<td>30</td>
</tr>
</tbody>
</table>
Additional compensation may come from the GP charging transaction fees and monitoring fees, most commonly in Leveraged Buyout strategies.
Additional compensation may come from the GP charging transaction fees and monitoring fees, most commonly in Leveraged Buyout strategies.

Let TF_t denote the cumulative transaction fees paid up to time $t \in [0, T_l]$ and assume that transaction fees are fully paid at entry (purchase) as a fraction c_{TF} of the deal size.
Additional compensation may come from the GP charging **transaction fees** and **monitoring fees**, most commonly in Leveraged Buyout strategies.

Let TF_t denote the cumulative transaction fees paid up to time $t \in [0, T]$ and assume that transaction fees are fully paid at entry (purchase) as a fraction c_{TF} of the deal size.

If l denotes the average leverage ratio applied, the **dynamics of the transaction fees** can be represented by:

$$dTF_t = c_{TF}dD_t \times (1 + l)$$ (17)
Additional compensation may come from the GP charging **transaction fees** and **monitoring fees**, most commonly in Leveraged Buyout strategies.

Let TF_t denote the cumulative transaction fees paid up to time $t \in [0, T]$ and assume that transaction fees are fully paid at entry (purchase) as a fraction c_{TF} of the deal size.

If l denotes the average leverage ratio applied, the **dynamics of the transaction fees** can be represented by:

$$d\text{TF}_t = c_{\text{TF}}dD_t \times (1 + l)$$ \hspace{1cm} (17)

The typical profit-sharing rule between the GP and LPs for transaction fees is that they split the proceeds 50/50, *i.e.* $d\text{TF}_{t}^{(LP)} = d\text{TF}_{t}^{(GP)} = 0.5 \times d\text{TF}_t$.
Additional compensation may come from the GP charging transaction fees and monitoring fees, most commonly in Leveraged Buyout strategies.

Let TF\(_t\) denote the cumulative transaction fees paid up to time \(t \in [0, T_l]\) and assume that transaction fees are fully paid at entry (purchase) as a fraction \(c_{TF}\) of the deal size.

If \(l\) denotes the average leverage ratio applied, the dynamics of the transaction fees can be represented by:

\[
dTF_t = c_{TF}dD_t \times (1 + l)
\] \hspace{1cm} (17)

The typical profit-sharing rule between the GP and LPs for transaction fees is that they split the proceeds 50/50, i.e. \(dTF_t^{(LP)} = dTF_t^{(GP)} = 0.5 \times dTF_t\).
Let MoF$_t$ denote the cumulative monitoring fees paid up to time $t \in [0, T_L]$ and assume that monitoring fees are paid at exit as a fraction c_{MoF} of the total firm value.
Let \(\text{MoF}_t \) denote the cumulative monitoring fees paid up to time \(t \in [0, T_L] \) and assume that monitoring fees are paid at exit as a fraction \(c_{\text{MoF}} \) of the total firm value.

If \(s_F \) denotes the (average) share the fund holds in its portfolio companies, the dynamics of the monitoring fees can be modeled by:

\[
d\text{MoF}_t = c_{\text{MoF}} dR_t \times \left(\frac{1 + l}{s_F} \right)
\]

(18)
Let \(\text{MoF}_t \) denote the cumulative monitoring fees paid up to time \(t \in [0, T_L] \) and assume that monitoring fees are paid at exit as a fraction \(c_{\text{MoF}} \) of the total firm value.

If \(s_F \) denotes the (average) share the fund holds in its portfolio companies, the **dynamics of the monitoring fees** can be modeled by:

\[
d\text{MoF}_t = c_{\text{MoF}} dR_t \times \left(\frac{1 + l}{s_F} \right)
\]

(18)

We use the typical sharing rule and allocate 20% of the monitoring fees to the GP and 80% to the LPs, *i.e.* \(d\text{MoF}^{(LP)}_t = 0.8 \times d\text{MoF}_t \) and \(d\text{MoF}^{(GP)}_t = 0.2 \times d\text{MoF}_t \).
Let MoF_t denote the cumulative monitoring fees paid up to time $t \in [0, T_L]$ and assume that monitoring fees are paid at exit as a fraction c_{MoF} of the total firm value.

If s_F denotes the (average) share the fund holds in its portfolio companies, the dynamics of the monitoring fees can be modeled by:

$$d\text{MoF}_t = c_{\text{MoF}}dR_t \times \left(1 + \frac{l}{s_F}\right)$$

(18)

We use the typical sharing rule and allocate 20% of the monitoring fees to the GP and 80% to the LPs, i.e. $d\text{MoF}_t^{(LP)} = 0.8 \times d\text{MoF}_t$ and $d\text{MoF}_t^{(GP)} = 0.2 \times d\text{MoF}_t$.
We assume an equilibrium framework in which LPs’ expected excess returns (net of fees) equal zero, such that GPs capture all rents from managing the funds:

\[
E_Q \left[\int_0^{T_1} e^{-rf_u} \left(dR_u - dD_u - dMF_u - dCI_u + dPF_{uLP} \right) \right] = 0
\]
We assume an equilibrium framework in which LPs’ expected excess returns (net of fees) equal zero, such that GPs capture all rents from managing the funds:

$$E_Q \left[\int_0^{T_1} e^{-rf} \left(dR_u - dD_u - dMF_u - dCI_u + dPF^{LP}_u \right) \right] = 0$$

We solve the equilibrium condition for the (ex ante) expected rate of return μ^*_V by using Monte Carlo simulations.
We assume an equilibrium framework in which LPs’ expected excess returns (net of fees) equal zero, such that GPs capture all rents from managing the funds:

\[E_Q \left[\int_0^{T_f} e^{-rfu} (dR_u - dD_u - dMF_u - dCI_u + dPF_{LP}^u) \right] = 0 \]

We solve the equilibrium condition for the \((ex \ ante)\) expected rate of return \(\mu^*_V\) by using Monte Carlo simulations.

Using this result, we compute the gross-of-fees abnormal rate of return \(\alpha\) (the break-even alpha) that the GPs have to generate by:

\[\alpha = \mu^*_V - \mu_V = \mu^*_V - r_f - \beta_V (\mu_M - r_f) \]
We assume an equilibrium framework in which LPs’ expected excess returns (net of fees) equal zero, such that GPs capture all rents from managing the funds:

\[\mathbb{E}_Q \left[\int_0^{T_1} e^{-r_f t} \left(dR_u - dD_u - dMF_u - dCI_u + dPF_{LP} \right) \right] = 0 \]

- We solve the equilibrium condition for the (ex ante) expected rate of return \(\mu^*_V \) by using Monte Carlo simulations.
- Using this result, we compute the gross-of-fees abnormal rate of return \(\alpha \) (the break-even alpha) that the GPs have to generate by:

\[\alpha = \mu^*_V - \mu_V = \mu^*_V - r_f - \beta_V (\mu_M - r_f) \]

- We also extend the framework by allowing LPs to earn a positive out-performance after fees.
We assume an equilibrium framework in which LPs’ expected excess returns (net of fees) equal zero, such that GPs capture all rents from managing the funds:

\[
E_Q \left[\int_0^{T_l} e^{-rf_u} \left(dR_u - dD_u - dMF_u - dCI_u + dPF_{u}\text{LP} \right) \right] = 0
\]

We solve the equilibrium condition for the (ex ante) expected rate of return \(\mu^*_V \) by using Monte Carlo simulations.

Using this result, we compute the gross-of-fees abnormal rate of return \(\alpha \) (the break-even alpha) that the GPs have to generate by:

\[
\alpha = \mu^*_V - \mu_V = \mu^*_V - r_f - \beta_V (\mu_M - r_f)
\]

We also extend the framework by allowing LPs to earn a positive out-performance after fees.
Theorem (Fee Value): Applying a risk-neutral valuation approach, the arbitrage-free present value of the fund fees $V_0^{(GP)}$ is given by:

$$V_0^{(GP)} = E_Q \left[\int_0^{T_L} e^{-r_f u} dMF_u \right] + E_Q \left[\int_0^{T_L} e^{-r_f u} dCI_u \right] + E_Q \left[\int_0^{T_L} e^{-r_f u} dPF_u^{(GP)} \right],$$

(19)

where $V_0^{(MF)}$ is the present value of management fees, $V_0^{(CI)}$ is the present value of carried interest payments, and $V_0^{(PF)}$ is the present value of lifetime portfolio company fees received by the GPs.
Fee valuation: single fund

- **Theorem (Fee Value):** Applying a risk-neutral valuation approach, the arbitrage-free present value of the fund fees $V^{(GP)}_0$ is given by:

$$V^{(GP)}_0 = E_Q \left[\int_0^{T_L} e^{-r_f u} dMF_u \right] + E_Q \left[\int_0^{T_L} e^{-r_f u} dCI_u \right] + E_Q \left[\int_0^{T_L} e^{-r_f u} dPF^{(GP)}_u \right],$$

where $V^{(MF)}_0$ is the present value of management fees, $V^{(CI)}_0$ is the present value of carried interest payments, and $V^{(PF)}_0$ is the present value of lifetime portfolio company fees received by the GPs.

- We use Monte Carlo simulations to solve for the present values.
Theorem (Fee Value): Applying a risk-neutral valuation approach, the arbitrage-free present value of the fund fees $V_{0}^{(GP)}$ is given by:

$$V_{0}^{(GP)} = E_Q \left[\int_0^{T_L} e^{-rf_u} dMF_u \right] + E_Q \left[\int_0^{T_L} e^{-rf_u} dCI_u \right] + E_Q \left[\int_0^{T_L} e^{-rf_u} dPF_{u}^{(GP)} \right], \quad (19)$$

where $V_{0}^{(MF)}$ is the present value of management fees, $V_{0}^{(CI)}$ is the present value of carried interest payments, and $V_{0}^{(PF)}$ is the present value of lifetime portfolio company fees received by the GPs.

We use Monte Carlo simulations to solve for the present values.
Death & taxes?

<table>
<thead>
<tr>
<th></th>
<th>NO DEAL FEES</th>
<th></th>
<th>WITH DEAL FEES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONSTANT FEE BASIS</td>
<td>FEE BASIS CHANGE</td>
<td>CONSTANT FEE BASIS</td>
<td>FEE BASIS CHANGE</td>
</tr>
<tr>
<td></td>
<td>No catch-up</td>
<td>With catch-up</td>
<td>No catch-up</td>
<td>With catch-up</td>
</tr>
<tr>
<td>MF</td>
<td>$15.86</td>
<td>$15.86</td>
<td>$11.43</td>
<td>$11.43</td>
</tr>
<tr>
<td>(MF)</td>
<td></td>
<td></td>
<td>$0.40</td>
<td>$0.39</td>
</tr>
<tr>
<td>CI</td>
<td>$3.88</td>
<td>$4.23</td>
<td>$4.44</td>
<td>$4.82</td>
</tr>
<tr>
<td>(CI)</td>
<td>$8.78</td>
<td>$8.40</td>
<td>$9.49</td>
<td>$9.04</td>
</tr>
<tr>
<td>(CI 5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI 10%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI 20%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI 30%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI 50%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI 60%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI 65%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI 70%)</td>
<td>$2.05</td>
<td>$4.52</td>
<td>$3.09</td>
<td>$5.35</td>
</tr>
<tr>
<td>(CI 75%)</td>
<td>$3.88</td>
<td>$5.96</td>
<td>$5.06</td>
<td>$6.87</td>
</tr>
<tr>
<td>(CI 80%)</td>
<td>$6.12</td>
<td>$7.73</td>
<td>$7.41</td>
<td>$8.79</td>
</tr>
<tr>
<td>(CI 85%)</td>
<td>$9.01</td>
<td>$10.15</td>
<td>$10.44</td>
<td>$11.36</td>
</tr>
<tr>
<td>(CI 90%)</td>
<td>$13.15</td>
<td>$13.70</td>
<td>$14.82</td>
<td>$15.10</td>
</tr>
<tr>
<td>(CI 95%)</td>
<td>$20.68</td>
<td>$20.30</td>
<td>$22.59</td>
<td>$21.97</td>
</tr>
<tr>
<td>TF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(TF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MoF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MoF 5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MoF 25%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MoF 75%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MoF 95%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure: Net present value of a fund’s fees. Management fee is denoted by “MF”, carried interest by “CI”, transaction fees by “TF” and monitoring fees by “MoF” (the latter pair being most common in Leveraged Buyout strategies). The means are shown in large font, while the values in parenthesis are either the standard deviations of the means, or the quantiles of the Monte Carlo distributions, as indicated by the quantile and the % sign.
Figure: Net present value of management fee (denoted by “MF”)
Figure: Net present value of carried interest (denoted by “CI”)
Figure: Net present value of transaction fees (denoted by “TF”) for Leveraged Buyout funds

| MF |
|------|---|
| | No deal fees |
| | Constant fee basis |
| | Fee basis change |
| | No catch-up | With catch-up | No catch-up | With catch-up |
| MF | $15.86 | $15.86 | $11.43 | $11.43 |
| (MF) | | | $0.40 | $0.39 |
| CI | $3.88 | $4.23 | $4.44 | $4.82 |
| (CI) | | | $0.49 | $0.49 |
| (CI 5%) | | | | |
| (CI 10%) | | | | |
| (CI 20%) | | | | |
| (CI 30%) | | | | |
| (CI 50%) | | | | |
| (CI 60%) | | | | |
| (CI 70%) | | | | |
| (CI 75%) | | | | |
| (CI 80%) | | | | |
| (CI 85%) | | | | |
| (CI 90%) | | | | |
| (CI 95%) | | | | |

| TF |
|------|---|
| | With deal fees |
| | Constant fee basis |
| | Fee basis change |
| | No catch-up | With catch-up | No catch-up | With catch-up |
| TF | $15.86 | $15.86 | $11.43 | $11.43 |
| (TF) | | | $0.39 | $0.39 |
| MoF | $7.30 | $7.30 | $7.71 | $7.70 |
| (MoF)| | | $3.96 | $3.98 |
| (MoF 5%) | | | | |
| (MoF 25%) | | | | |
| (MoF 75%) | | | | |
| (MoF 95%) | | | | |
Death & taxes?

<table>
<thead>
<tr>
<th></th>
<th>NO DEAL FEES</th>
<th></th>
<th>WITH DEAL FEES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONSTANT FEE BASIS</td>
<td>FEE BASIS CHANGE</td>
<td>CONSTANT FEE BASIS</td>
<td>FEE BASIS CHANGE</td>
</tr>
<tr>
<td></td>
<td>No catch-up</td>
<td>With catch-up</td>
<td>No catch-up</td>
<td>With catch-up</td>
</tr>
<tr>
<td>MF (MF)</td>
<td>$15.86</td>
<td>$15.86</td>
<td>$11.43</td>
<td>$11.43</td>
</tr>
<tr>
<td>CI (CI)</td>
<td>$3.88</td>
<td>$4.23</td>
<td>$4.44</td>
<td>$4.82</td>
</tr>
<tr>
<td>(CI5%)</td>
<td>$8.78</td>
<td>$8.40</td>
<td>$9.49</td>
<td>$9.04</td>
</tr>
<tr>
<td>(CI10%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI20%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI30%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI50%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI60%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI 65%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CI 70%)</td>
<td>$2.05</td>
<td>$4.52</td>
<td>$3.09</td>
<td>$5.35</td>
</tr>
<tr>
<td>(CI 75%)</td>
<td>$3.88</td>
<td>$5.96</td>
<td>$5.06</td>
<td>$6.87</td>
</tr>
<tr>
<td>(CI 80%)</td>
<td>$6.12</td>
<td>$7.73</td>
<td>$7.41</td>
<td>$8.79</td>
</tr>
<tr>
<td>(CI 85%)</td>
<td>$9.01</td>
<td>$10.15</td>
<td>$10.44</td>
<td>$11.36</td>
</tr>
<tr>
<td>(CI 90%)</td>
<td>$13.15</td>
<td>$13.70</td>
<td>$14.82</td>
<td>$15.10</td>
</tr>
<tr>
<td>(CI 95%)</td>
<td>$20.68</td>
<td>$20.30</td>
<td>$22.59</td>
<td>$21.97</td>
</tr>
<tr>
<td>TF (TF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoF (MoF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MoF5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MoF25%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MoF75%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MoF95%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure: Net present value of monitoring fees (denoted by “MoF”) for Leveraged Buyout funds
To-do list

- Currently working on parameter estimation from the Preqin data set

7We’re grateful to Etienne Paresys and the Performance Team at Preqin, along with Eileen Lannon from Preqin Sales, for making the Preqin data available for our analysis.
To-do list

- Currently working on parameter estimation from the Preqin data set
- Planned extensions include:

7We’re grateful to Etienne Paresys and the Performance Team at Preqin, along with Eileen Lannon from Preqin Sales, for making the Preqin data available for our analysis.
To-do list

- Currently working on parameter estimation from the Prequin data set
- Planned extensions include:
 - Rewriting the core SDE solvers in C++ (development of the sdeint library)

7We’re grateful to Etienne Paresys and the Performance Team at Prequin, along with Eileen Lannon from Prequin Sales, for making the Prequin data available for our analysis.
To-do list

• Currently working on parameter estimation from the Preqin data set

• Planned extensions include:
 • Rewriting the core SDE solvers in C++ (development of the sdeint library)
 • Incorporating PE fund fees into the risk-measure calculations

7We’re grateful to Etienne Paresys and the Performance Team at Preqin, along with Eileen Lannon from Preqin Sales, for making the Preqin data available for our analysis.
To-do list

- Currently working on parameter estimation from the Prequin data set
- Planned extensions include:
 - Rewriting the core SDE solvers in C++ (development of the sdeint library)
 - Incorporating PE fund fees into the risk-measure calculations
 - Modeling portfolios of PE funds

7We’re grateful to Etienne Paresys and the Performance Team at Prequin, along with Eileen Lannon from Prequin Sales, for making the Prequin data available for our analysis.
To-do list

- Currently working on parameter estimation from the Preqin data set

- Planned extensions include:
 - Rewriting the core SDE solvers in C++ (development of the sdeint library)
 - Incorporating PE fund fees into the risk-measure calculations
 - Modeling portfolios of PE funds
 - Modeling the underlying portfolio companies and aggregating to the fund level

7We’re grateful to Etienne Paresys and the Performance Team at Preqin, along with Eileen Lannon from Preqin Sales, for making the Preqin data available for our analysis.
To-do list

- Currently working on parameter estimation from the Preqin data set

- Planned extensions include:
 - Rewriting the core SDE solvers in C++ (development of the sdeint library)
 - Incorporating PE fund fees into the risk-measure calculations
 - Modeling portfolios of PE funds
 - Modeling the underlying portfolio companies and aggregating to the fund level

- Release the package!

7We’re grateful to Etienne Paresys and the Performance Team at Preqin, along with Eileen Lannon from Preqin Sales, for making the Preqin data available for our analysis.
To-do list

- Currently working on parameter estimation from the Prequin data set\(^7\)
- Planned extensions include:
 - Rewriting the core SDE solvers in C++ (development of the `sdeint` library)
 - Incorporating PE fund fees into the risk-measure calculations
 - Modeling portfolios of PE funds
 - Modeling the underlying portfolio companies and aggregating to the fund level
- Release the package!

Watch this space: https://github.com/tharte/PE

\(^7\)We’re grateful to Etienne Paresys and the Performance Team at Prequin, along with Eileen Lannon from Prequin Sales, for making the Prequin data available for our analysis.
To-do list

- Currently working on parameter estimation from the Preqin data set
- Planned extensions include:
 - Rewriting the core SDE solvers in C++ (development of the sdeint library)
 - Incorporating PE fund fees into the risk-measure calculations
 - Modeling portfolios of PE funds
 - Modeling the underlying portfolio companies and aggregating to the fund level
- Release the package!

Watch this space: https://github.com/tharte/PE

7 We’re grateful to Etienne Paresys and the Performance Team at Preqin, along with Eileen Lannon from Preqin Sales, for making the Preqin data available for our analysis.
References

