
Economic Time Series Filtering: An alternative
approach with the neverhpfilter package

Justin M. Shea

June 1st, 2018

Motivation

James Hamilton’s working paper, WHY YOU SHOULD NEVER
USE THE HODRICK-PRESCOTT FILTER
(2017)<doi:10.3386/w23429> summarizes the problem with the
popular filter in three points:
I (1) The HP filter produces series with spurious dynamic relations

that have no basis in the underlying data-generating process.

I (2) Filtered values at the end of the sample are very different from
those in the middle, and are also characterized by spurious
dynamics.

I (3) A statistical formalization of the problem typically produces
values for the smoothing parameter vastly at odds with common
practice, e.g., a value for λ far below 1600 for quarterly data.

https://www.nber.org/papers/w23429

If you gave someone HP-Filtered data feeling like this. . .

. . . In reality, its more like this:

(Inspired by the one and only Mara Averick @dataandme)

The 4th point of Hamilton’s abstract presents a solution

I (4) There’s a better alternative. A regression of the variable at date
t + h on the four most recent values (for quarterly data) as of
date t offers a robust approach to detrending that achieves all
the objectives sought by users of the HP filter with none of its
drawbacks.

yt+8 = β0 + β1yt + β2yt−1 + β3yt−2 + β4yt−3 + vt+8

Which can be rewritten as:

yt = β0 + β1yt−8 + β2yt−9 + β3yt−10 + β4yt−11 + vt

Do any of Hamilton’s peers agree? From the cover page:

I thank Daniel Leff for outstanding research assistance on this
project and Frank Diebold, Robert King, James Morley, and
anonymous referees for helpful comments on an earlier draft of this
paper.

Implementing Hamilton’s alternative: neverhpfilter package

yth_glm: fits a generalized linear model object of class glm.

yt+8 = β0 + β1yt + β2yt−1 + β3yt−2 + β4yt−3 + vt+8

yth_glm(x, h = 8, p = 4, ...)

yth_filter: returns an xts object containing user defined
combinations of the original, trend, cycle, and random walk series.
yth_filter(x, h = 8, p = 4,

output = c("x", "trend", "cycle", "random"),
...)

In addition the package comes with 14 documented data sets used
to reproduce the results of Hamilton(2017).

Hamilton’s alternative: Model estimation function

For model estimation, I settled on glm because. . . model object!
library(neverhpfilter)
gdp_model <- yth_glm(100*log(GDPC1), h = 8, p = 4)

term estimate std.error statistic p.value

(Intercept) 27.2025075 2.9638555 9.1780814 0.0000000
xt_0 1.1722639 0.2336541 5.0170908 0.0000010
xt_1 -0.3432205 0.3858303 -0.8895632 0.3745012
xt_2 -0.1296324 0.3856853 -0.3361092 0.7370525
xt_3 0.2769114 0.2320986 1.1930765 0.2338985

Hamilton’s alternative: Filtered series
library(neverhpfilter)
gdp_filtered <- yth_filter(100*log(GDPC1),

h = 8, p = 4,
output = c("x", "trend", "cycle"))

tail(gdp_filtered, 8)

GDPC1 GDPC1.trend GDPC1.cycle
2015 Q4 971.3998 971.0746 0.32512275
2016 Q1 971.5444 970.4246 1.11980556
2016 Q2 972.0977 971.9094 0.18831943
2016 Q3 972.7833 973.3109 -0.52760922
2016 Q4 973.2190 973.2501 -0.03104638
2017 Q1 973.5261 974.1597 -0.63363121
2017 Q2 974.2795 974.9659 -0.68630695
2017 Q3 975.0563 975.2427 -0.18635065

class(gdp_filtered)

[1] "xts" "zoo"

Got Dependencies?

Got Dependencies?

tools::package_dependencies("neverhpfilter")

$neverhpfilter
[1] "xts" "zoo"

Why depend on xts?
I Safer
I Model functions accept and return xts objects of any

periodicity.
class(GDPC1)

[1] "xts" "zoo"

xts::periodicity(GDPC1)

Quarterly periodicity from 1947 Q1 to 2017 Q3

y <- yth_filter(100*log(GDPC1), h = 8, p = 4)
class(y)

[1] "xts" "zoo"

xts::periodicity(y)

Quarterly periodicity from 1947 Q1 to 2017 Q3

Why depend on xts?
plot(x, ...) quickly produces nice graphs.

1980−Q1 1983−Q2 1986−Q3 1989−Q4 1993−Q1 1996−Q2 1999−Q3 2002−Q4 2006−Q1 2009−Q2 2012−Q3 2015−Q4

Log of Real GDP (GDPC1) and trend 1980 Q1 / 2017 Q3

880

900

920

940

960

880

900

920

940

960

GDPC1
GDPC1.trend

−5

 0

 5

−5

 0

 5

Reproducing Hamilton’s solution

James Hamilton is cool with open source R

And he did it!

Download the package and collaborate

On Cran:
install.packages("neverhpfilter")

Or dev version with current data:
devtools::install_github("JustinMShea/neverhpfilter")

Thank you R/Finance!

