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Peter Rousseeuw’s MCD estimator

Goal: Shrink the data to the subset of h “good” observations and
estimate the covariance on that subset. Typically: h = d0.5ne or
h = d0.75ne.
More formally: Given an n × p data matrix X = (x1, . . . , xn)′ with
x i = (xi1, . . . , xip)′, the MCD finds the h < n observations whose
sample covariance matrix has the lowest possible determinant.
The mean and covariance of that sample is the MCD mean and
scatter matrix.
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Why is the MCD useful? Example of animal body and
brain weight.
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Index Species Body weight Log body Brain weight Log brain
(in kilograms) weight (in grams) weight

1 Mountain Beaver 1.350 0.300 8.1 2.092
2 Cow 465.000 6.142 423.0 6.0473
3 Gray wolf 36.330 3.593 119.5 4.783
4 Goat 27.660 3.320 115.0 4.745
5 Guinea pig 1.040 0.039 5.5 1.705
6 Diplodocus 11700.000 9.367 50.0 3.912
7 Asian elephant 2547.000 7.843 4603.0 8.434
8 Donkey 187.100 5.232 419.0 6.038
9 Horse 521.000 6.256 655.0 6.485
10 Potar monkey 10.000 2.303 115.0 4.745
11 Cat 3.300 1.194 25.6 3.243
12 Giraffe 529.000 6.271 680.0 6.522
13 Gorilla 207.000 5.333 406.0 6.006
14 Human 62.000 4.127 1320.0 7.185
15 African elephant 6654.000 8.803 5712.0 8.650
16 Triceratops 9400.000 9.148 70.0 4.248
17 Rhesus monkey 6.800 1.917 179.0 5.187
18 Kangaroo 35.000 3.555 56.0 4.025
19 Hamster 0.120 −2.120 1.0 0.00
20 Mouse 0.023 −3.772 0.4 −0.916
21 Rabbit 2.500 0.916 12.1 2.493
22 Sheep 55.500 4.016 175.0 5.165
23 Jaguar 100.000 4.605 157.0 5.056
24 Chimpanzee 52.160 3.954 440.0 6.087
25 Brachiosaurus 87000.000 11.374 154.5 5.040
26 Rat 0.280 −1.273 1.9 0.642
27 Mole 0.122 −2.104 3.0 1.099
28 Pig 192.000 5.257 180.0 5.193

Table: Body and brain weight for 28 Animals.
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The MCD subset for h = d0.5ne
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Merits of the MCD estimator

Intuitive: minimizes a clear objective function;
Elliptical distributions: consistency, asymptotic normality;
Resistance to outliers: High breakdown point, bounded influence
function.
Efficient algorithm exists to solve the problem, exploiting the C-step
theorem. See covMcd in robustbase and rrcov of Valentin Todorov.
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Drawback of the MCD estimator

Use of subsets for estimation can be inefficient. Solution is to use a
reweighted version of the MCD in which only the detected outliers
receive a low weight.
Practical implementation requires to invert the subset covariance, and
is thus only applicable for p < h. For accuracy, recommendation is
n > 5p.
⇒ Problematic in case of fat data. A big MCD is needed.
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Solution: Shrinking the covariance matrix

Extremely popular in finance.
Implemented in the covEstimation function of the RiskPortfolios
package of Ardia, Boudt and Gagnon-Fleury (2017).
Not robust. In fact, in case of the identity matrix as target, one can
show that one big outlier is sufficient to put all the weight on the
target.
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Non-robustness of shrinkage to the identity

1 # Define function computing Shrinkage intensity when target = z*
Identity

2 library ( RiskPortfolios )
3 intensity <- function (rets)
4 {
5 lwCovElement <- RiskPortfolios :::. lwCovElement (rets , type = "

oneparm ")
6 t <- lwCovElement $t
7 n <- lwCovElement $n
8 mu <- lwCovElement $mu
9 shiftRets <- lwCovElement $ shiftRets

10 smple <- lwCovElement $ smple
11 y <- lwCovElement $y
12 meanvar <- mean(diag( smple ))
13 prior <- meanvar * diag(n)
14 phiMat <- crossprod (y)/t - 2 * ( crossprod ( shiftRets )) * smple /t +
15 smple ˆ2
16 phi <- sum( apply (phiMat , 2, sum))
17 gamma <- norm( smple - prior , type = "F")ˆ2
18 kappa <- phi/ gamma
19 shrinkage <- pmax (0, pmin (1, kappa /t))
20 return ( shrinkage )
21 }
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Non-robustness of shrinkage to the identity

1 data(" Industry _10") #rets (in %): 200 rows , 100 columns
2 # on this data , the shrinkage intensity equals 0.21
3 # what happens if we replace the first observation by an outlier of

size k, with k ranging from -100 (%) to 200 (%)?
4 vrho <- rep(NA ,100)
5 vk <- seq ( -100 ,200 , length .out =100)
6 i <- 1
7 contrets <- rets
8 for(k in vk ){
9 contrets [1 ,] <- k

10 vrho[i] <- intensity ( contrets )
11 i <- i+1
12 }
13 plot(vk ,vrho ,type="l", xlab=" contamination value ",ylim=c(0 ,1) ,ylab=

" Shrinkage intensity ")
14 text( 0 ,0.1 , paste (" Intensity no outliers =", round ( intensity (rets)

,2) ))
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Explosion of shrinkage factor with outliers and identity as
target

We thus need to shrink BOTH the data and the covariance matrix.
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MRCD: Minimum Regularized Covariance Determinant
estimator

Define regularized covariance estimator as convex combination of
(1) predetermined, symmetric, positive definite target matrix T.

For simplicity in notation, assume here T = Ip.
(2) sample covariance estimate S(H) based on a subset H

K(H) = ρ I + (1− ρ)cαS(H),

where cα is a consistency factor and ρ ∈ (0, 1] is regularization
intensity parameter.
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MRCD: Minimum Regularized Covariance Deterimanant
estimator

Find subset H that minimizes the determinant of K(H):

HMRCD = arg min
H∈Hh

(det K(H))1/p.

Once optimal subset is determined, MRCD scatter is computed as
KMRCD = K(HMRCD).
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Calibration of regularization parameter

K(H) = ρ I + (1− ρ)cαS(H)

Set ρ such that K(H) is well-conditioned (λmax/λmin ≤ 1000).
Easy to implement, since the eigenvalues of K(H) equal ρ+ (1− ρ)λ.
We only use regularization when needed!
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Key property: C -step theorem
Starting from h-subset H1, compute m1 = 1

h
∑

i∈H1 xi and
S1 = 1

h
∑

i∈H1(xi −m1)(xi −m1)′. The matrix K1 = ρT + (1− ρ)S1 is
positive definite hence invertible, so we can compute

d1(i) = (xi −m1)′K−1
1 (xi −m1) i = 1, . . . , n.

Let H2 be an h-subset for which∑
i∈H2

d1(i) ≤
∑
i∈H1

d1(i)

and compute m2 = 1
h

∑
i∈H2 xi , S2 = 1

h
∑

i∈H1(xi −m2)(xi −m2)′ and
K2 = ρT + (1− ρ)S2. Then:

det(K2) ≤ det(K1),

with equality iff m2 = m1 and K2 = K1.
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Algorithm

0. Standardize the data using the median and the Qn estimator for
univariate location and scale.

1. Initialization of subset selection. Follow Subsection 3.1 in Hubert
et al. (2012) to obtain six robust, well-conditioned initial location
estimates mi and scatter estimates Si (i = 1, . . . , 6).

2. C-step. Determine the subsets H i
0 containing the h observations with

lowest Mahalanobis distance in terms of mi and Si .
3. Calibrate intensity parameter. For each subset H i

0, determine the
smallest value of 0 ≤ ρi < 1 for which ρi I + (1− ρi )cαS(H i

0) is
well-conditioned. Denote this value as ρi

0 .
4. If maxi ρ

i
0 ≤ 0.1, set ρ = maxi ρ

i
0, else set ρ = max{0.1; medianiρ

i
0} .

5. Repeat C-steps till convergence. For the initial subset H i
0 for which

ρi
0 ≤ ρ, repeat the generalized C-steps using ρ I + (1− ρ)cαS(H i

0)
until convergence. Denote the resulting subsets as H i .

6. Let HMRCD be the subset for which ρ I + (1− ρ)cαS(H i ) has the
lowest determinant among the candidate subsets.
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Conclusion: Merits of the MRCD estimator

Honey, we shrunk the data and the covariance matrix.
Intuitive: minimizes a clear objective function.
For fixed p, same asymptotic properties as MCD since no
regularization asymptotically.
Resistant to outliers: High breakdown point, bounded influence
function.
Practical: algorithm based on C-steps
Next: Simulation study confirms accuracy and that it outperforms the
only other multivariate robust covariance estimator available for fat
data, namely the OGK estimator of Maronna and Zamar (2002),
implemented as covOGK in robustbase.
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Simulation study

We focus on MRCD with the identity matrix as target.
We follow Agostinelli et al. (2015) by simulating from a p-variate
normal distribution with a correlation matrix that is randomly
generated in each replication
We take n × p as either 800× 100, 200× 100, and 200× 400.
We let the fraction of contamination ε be either 0% (clean data),
20% or 40% (medium sized (k = 50, along the eigenvector direction
of Σ with smallest eigenvalue, since this is the direction where the
contamination is hardest to detect).
As performance measure we show the Mean Squared Error (MSE):

MSE = 1
M

1
p2

M∑
m=1

p∑
k=1

p∑
l=1

(Sm −Σm)2
k,l .
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Simulation Results: Clean data

MSE Average value of ρ
800× 100 200× 100 200× 400 800× 100 200× 100 200× 400

h = d0.5ne 0.0024 0.0087 0.0105 0 0.0047 0.0108
h = d0.75ne 0.0017 0.0064 0.0066 0 0.0001 0.0080
h = n 0.0013 0.0050 0.0049 0 0 0.0064
OGK 0.0015 0.0060 0.0058

No outliers: best is h = n
Regularize when needed
Outperformance wrt OGK.
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Simulation Results: 20% contamination

MSE Average value of ρ
800× 100 200× 100 200× 400 800× 100 200× 100 200× 400

h = d0.5ne 0.0024 0.0088 0.0102 0 0.0023 0.0053
h = d0.75ne 0.0017 0.0066 0.0066 0 0 0.0039
h = n 17.4482 15.6942 4.3830 0.0220 0.1234 0.2251
OGK 0.0079 0.0187 0.0146

Breakdown for h = n.
otherwise robustness.
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Simulation Results: 40% contamination

MSE Average value of ρ
800× 100 200× 100 200× 400 800× 100 200× 100 200× 400

h = d0.5ne 0.0025 0.0094 0.0099 0 0.0011 0.0022
h = d0.75ne 2.8783 3.462 3.1857 0 0.0227 0.0842
h = n 66.8405 60.5137 16.4693 0.0367 0.1055 0.1736
OGK 0.0398 0.0744 0.0477

Breakdown for h = n and h = d0.75ne .
Robustness for h = d0.5ne.

K.Boudt MRCD 2018 21 / 30



Illustration on real data

Outlier detection (chemistry);
Regression analysis (criminology);
Minimum variance portfolios.
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Application to outlier detection: Octane data

n = 39 gasoline samples with certain octane levels whose spectra
have p = 226 wavelengths (variables).
It is known that six samples (25, 26, 36-39) contain ethanol.
For outlier detection, compute robust distance of each observation:

di =
√

(xi −mMRCD)′K−1
MRCD(xi −mMRCD)

K.Boudt MRCD 2018 23 / 30



Outlier detection
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Figure: Robust distances of the octane data, based on the MRCD
with h = 33.
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Application to regression analysis: What explains the
murder rate in US states?

Murder rate per 100,000 residents in the n = 50 states of the US in
1980 on 25 demographic predictors.
Robust regression:

β̂MRCD = K−1
xx Kxy .
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MRCD vs OLS coefficients
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Figure: MRCD vs OLS coefficients of the multivariate regression
of murder rate in 980 on 25 demographic predictors.

Negative coefficient for telephone density in 1980.
PH is proxy for the technological level of the state: on average the
more technologically advanced the state, the lower the murder rate,
other things being equal.

K.Boudt MRCD 2018 26 / 30



MRCD vs OLS coefficients
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Figure: Scatter plot of murder rate per state against phone
density. The red triangles indicate the observations that are not
included in the final MRCD subset with h = 44.

Arkansas is a bad leverage point. Nevada is a vertical outlier.
Omitting them has led to a more negative value of this slope.
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Application to minimum variance investing in the S&P 500

Rolling sample of 3 years of monthly returns from 1987-2017
Minimum variance portfolios with 0 ≤ wi ≤ 5%
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Minimum variance investing in the S&P 500

Figure: Cumulative performance charts of minimum variance
portfolios.
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Conclusions

Honey, we shrunk the data and the covariance matrix
We generalized the MCD approach by estimating the covariance
matrix using a convex combination of a target matrix and the sample
covariance matrix on the subset, chosen in order to minimize the
determinant of this regularized covariance estimate.
The resulting MRCD estimator preserves high breakdown properties
of MCD and is well-conditioned, even when p > n.
It only regularizes when needed.
Broad range of applications, including finance.
R code available at
https://wis.kuleuven.be/stat/robust/Programs/MRCD.
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