Hierarchical Hidden Markov Models in High-Frequency Stock Markets

Luis Damiano with Michael Waylandt and Brian Peterson R/Finance 2018 | 2018-06-02

- Motivation (30")
- Hierarchical Hidden Markov Models (2')
- Features (3')
- Application (7')
- Takeaway (1')

Motivation

Identify and predict price trends systematically in a profitable way

- Market behavior is complex and partially unknown
- Non-linear interactions between price and volume
- Multi-resolution: short-term trends within long-term trends
- High-frequency: noisy and large datasets need fast online computations

Ensemble of statistical and machine learning techniques

- 1. Create intermediate indicator variables
- 2. Combine into discrete features using technical analysis rules
- 3. Build a hierarchy to link all the features in a logical way
- 4. Apply clustering with **Markovian memory** (a parsimonious way to model non-linear correlations)

Hierarchical Hidden Markov Models

HMM cannot capture multi-scale dynamics.

- Recursive hierarchical generalization of the HMM.
- Systematic unsupervised approach for complex multi-scale structure.
- Motivated by multiplicity of length scales and the different stochastic levels.
- Inference on correlation over long periods via higher levels of hierarchy.

Hierarchical HMM¹

Figure 1: Hierarchical Hidden Markov Model for price and volume. Top states z_1^1 and z_2^1 represent bulls and bears.

10/49

¹See a complete description in the write-up (see last slides). R/Finance 2018

Features

Sequence of triples $\{y_k\}$

$$y_k = (t_k, p_k, v_k),$$

where $t_k \leq t_{k+1}$ is the time stamp in seconds, p_k is the trade price and v_k is the trade volume.

In other words: tick-by-tick trade price and size, or L1 data.

How to make useful features?

[...] some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used. (Domingos 2012)

What would make features strong?

- Underlying theory: representative of our beliefs about how markets work (interactions between price and volume)
- Empirical support: when applied on real data, results are consistent with empirical evidence
- **Statistical properties**: captures non-linearities in a simple, parsimonious, and tractable way
- Noise reduction: by discretization
- Computational complexity: reduce dataset size

(1) Identify local extrema, where e_n is the price at the extreme.
(2) Create intermediate variables and features²:

- f_n^0 direction: up/down.
- f_n^1 price trend: up/down/no trend.
- f_n² volume trend: volume strengthens/weakens/is indeterminant.

 $^{^2\}ensuremath{\mathsf{See}}$ the appendix for a formal definition of the variables.

R/Finance 2018

(3) Combine into 18 meaningful features linked hierarchically by the model.

Feature	Zig-zag	Price trend	Volume trend	Market State	Feature	Zig-zag	Price trend	Volume trend	Market State
U_1	Up + 1	Up +1	Strong $+1$	Bull	D_1	Dn -1	Up +1	Weak -1	Bull
U_2	Up + 1	Dn -1	Strong +1	Bull	D_2	Dn -1	Dn -1	Weak -1	Bull
U_3	Up + 1	Up + 1	Indet 0	Bull	D_3	Dn -1	Up + 1	Indet 0	Bull
U_4	Up + 1	No 0	Strong +1	Bull	D_4	Dn -1	No 0	Weak -1	Bull
U_5	Up + 1	No 0	Indet 0	Local	D_5	Dn -1	No 0	Indet 0	Local
U_6	Up + 1	No 0	Weak -1	Bear	D_6	Dn -1	No 0	Strong +1	Bear
U_7	Up + 1	Dn -1	Indet 0	Bear	D_7	Dn -1	Dn -1	Indet 0	Bear
U_8	Up + 1	Up +1	Weak -1	Bear	D_8	Dn -1	Up +1	Strong +1	Bear
U_9	Up + 1	Dn -1	Weak -1	Bear	D_9	Dn -1	Dn -1	Strong $+1$	Bear

Example (1)

Figure 2: Tick by tick trades from SPY 2018-01-04 16:39:00/2018-01-04 16:41:00.

Chicago, IL

Example (2)

Figure 3: Extrema extracted from SPY 2018-01-04 16:39:00/2018-01-04 16:41:00.

Chicago, IL

17/49

Example (3)

Figure 4: Features extracted from SPY 2018-01-04 16:39:00/2018-01-04 16:41:00.

Application

Back tested on 12 stocks³, 17 days, 7 configurations: $12 \times 17 \times 7 = 1,428$ out of sample daily returns.

- For most stocks, HHMM outperforms buy & hold (B&H).
- Returns virtually uncorrelated with B&H.
- Sometimes HHMM offers less variance than B&H (further research needed).

³Namely BBDb, BCE, CTCa, ECA, G, K, MGa, NXY, SJRb, SU, TCKb, TLM (all from Toronto Stock Exchange). R/Finance 2018 | 20/49

Replication (2)

Figure 5: Equity curves for twelve stocks.

Chicago, IL

We now test the model against more relevant data: current, larger datasets from different assets in more competitive and liquid markets.⁴ A total of 55 million observations.

- Does the model generalize well?
 - Will the model structure be representative of the behaviour of **other assets and markets**?
 - Will the model perform similarly in different contexts?
 - Will significantly **larger datasets** pose new computational challenges?

⁴Namely EFA, GLD, SPY, XLB, XLE, XLF, XLI, XLK, XLP, XLU, XLV, XLY. L1 data for 15 trading days each. R/Finance 2018 | Chicago, IL | 22/49

- If not, ...
 - What part of the model does not generalize?
 - What can we learn from the deviances?
 - What should we address next?

Has the model learnt two **distinct** latent states?

- In financial terms: Do returns vary in each state?
- In statistical terms:
 - Are the conditional (given the latent state) and unconditional distributions of returns different?
 - Alternatively, do latent states **contain information** about the returns?

9 Note: Informativeness (i.e. the ability to extract latent information from observations) does **not** guarantee profitability.

Latent state distinction - Example

Figure 6: Distribution of features from GLD 22017-12-29 14:30:00/2018-01-05 21:30:00 (in sample).

R/Finance 2018

Chicago, IL

25/49

- Tayal (2009) finds that the relative frequency of the conditional returns is significantly different from the relative frequency of the unconditional returns.
- In our new application, there is enough evidence to argue that return characteristics vary per state as well.

⁵Statistical tests are reported in the appendix.

Does the bullish regime have a **greater** mean return than the bearish regime?

- In **financial terms**: Are observed mean returns logically consistent with estimated states?
- In **statistical terms**: Is the mean return in the bullish state greater than the mean return in the bearish state?

- In-sample
 - Tayal (2009) finds strong **in-sample** evidence in favor of the hypothesis for the most liquid half of Canadian stocks.
 - In our new application, we also find **in sample** that the mean return in the bull state is greater than the mean return in the bear state.
- Out-of-sample:
 - Tayal (2009) finds strong evidence to answer the question positively for most Canadian stocks.
 - In our new application, no stock has statistically larger out-of-sample returns in bull states.
 - States are interchanged out-of-sample!.
 - Some rather strong limitations to t-test assumptions apply (further research on a better comparison methodology needed).

⁶Statistical tests are reported in the appendix.

Does the bullish regime have a positive mean return? Does the bearish regime have a negative mean return?

- In financial terms: Does the model capture runs and reversals correctly?
- In statistical terms: Is the mean return in the bullish state greater than zero? Is the mean return in the bearish state less than zero?

- In-sample:
 - Tayal (2009) finds strong evidence to answer the question positively for all Canadian stocks.
 - In our new application, all stocks have statistically positive (negative) in-sample returns in bull (bear) states.
- Out-of-sample
 - Tayal (2009) finds strong evidence in favor of the hypothesis for the most liquid half of Canadian stocks.
 - In our new application, none has statistically positive (negative) returns in bull (bear) states.
 - There seems to be a misclassification problem in top states.
 - Some rather strong limitations to t-test assumptions apply (further research on a better comparison methodology needed).

⁷Statistical tests are reported in the appendix.

- An informative model is **not** be profitable per se.
- Our workflow:
 - 1. Construct features from observed trade series.
 - 2. Use features to make on-line inference about the latent states.
 - 3. Use filtered states as a trading signal.
 - Go long when top level state switches to bullish (a run).
 - Go short when top level state switches to bearish (a reversal).
 - We trade with a one-tick lag because zig-zags are observed after completion.
 - We assume that we trade the next price (no fees).

Figure 7: Out-of-sample equity line (SPY 2018-01-02 14:30:00/2018-01-02 21:30:00).

R/Finance 2018

Figure 8: Out-of-sample equity line (GLD 2018-01-05 14:30:00/2018-01-05 21:30:00).

R/Finance 2018

Chicago, IL

33/49

Figure 9: Out-of-sample equity line (GLD 2018-01-08 14:30:00/2018-01-08 21:30:00).

R/Finance 2018

Chicago, IL

Figure 10: Out-of-sample equity line (GLD 2018-01-02 14:30:00/2018-01-02 21:30:00). R/Finance 2018

35/49

- In sample, the model shows a good fit in both the original and the new applications.
 - Estimated bull and bear markets show the expected properties.
- Out of sample, the model does not generalize well.
 - Although the model learns distinct states, bull and bear out-of-sample returns do not exhibit reasonable characteristics.
 - Trading performance deteriorates along with the number of trades, a hint of bias.

- Possible improvements:
 - The model should account for **bid-ask bounce**. In the proposed implementation, a bounce may trigger a trade.
 - More realistic feature engineering rules: volume bars (Easley, Lopez de Prado, and O'Hara 2012) and trade imbalance (Cont, Kukanov, and Stoikov 2014).
 - More stable regimes. With the current specification, top state has a median duration of 3 ticks. Market regimes are short lived.
 - The α threshold (change in volume) should be estimated to allow for a smoother transition among features. The suggestion that α = 0.25 may not produce reasonable zig-zags outside the original application.

On the computational side, more relevant **datasets are larger than the original application**. Fully Bayesian inference is unreasonable as of today.

Further research is needed on either:

- 1. More efficient learning algorithm.
- 2. More efficient implementations of current algorithms.

Our fully-reproducible implementation is available in GitHub.

- L1 (tick by tick) data for 12 stocks (CC-BY-NC).⁸
- R code for feature engineering and analysis (GNU-GPL 3).
- Stan code for Bayesian inference (GNU-GPL 3).
- Write-up with details about our replication (CC-BY).

R/Finance 2018

⁸Thomson Reuters has generously agreed to allow us to make the data available under the CC-BY-NC license. Please see the LICENSE file.

GSoC 2018: Full Bayesian Inference for Hidden Markov Models.

R package to run full Bayesian inference on Hidden Markov Models (HMM) using the probabilistic programming language Stan. By providing an intuitive, expressive yet flexible input interface, we enable non-technical users to carry out research using the Bayesian workflow.

Appendix

$$f_n^0 = \begin{cases} +1 & \text{if } e_n \text{ is a local maximum (positive zig-zag)} \\ -1 & \text{if } e_n \text{ is a local minimum (negative zig-zag),} \end{cases}$$

$$f_n^1 = \begin{cases} +1 & \text{if } e_{n-4} < e_{n-2} < e_n \land e_{n-3} < e_{n-1} \text{ (up-trend)} \\ -1 & \text{if } e_{n-4} > e_{n-2} > e_n \land e_{n-3} > e_{n-1} \text{ (down-trend)} \\ 0 & \text{otherwise (no trend).} \end{cases}$$

Feature engineering rules (2)

$$\nu_n^1 = \frac{\phi_n}{\phi_{n-1}}, \quad \nu_n^2 = \frac{\phi_n}{\phi_{n-2}}, \quad \nu_n^3 = \frac{\phi_{n-1}}{\phi_{n-2}}, \quad \tilde{\nu}_n^j = \begin{cases} +1 & \text{if } \nu_n^j - 1 > \alpha \\ -1 & \text{if } 1 - \nu_n^j > \alpha \\ 0 & \text{if } |\nu_n^j - 1| \le \alpha \end{cases}$$

 $f_n^2 = \begin{cases} +1 & \text{if } \tilde{\nu}_n^1 = 1, \tilde{\nu}_n^2 > -1, \tilde{\nu}_n^3 < 1 \text{ (volume strengthens)} \\ -1 & \text{if } \tilde{\nu}_n^1 = -1, \tilde{\nu}_n^2 < -1, \tilde{\nu}_n^3 > -1 \text{ (volume weakens)} \\ 0 & \text{otherwise (volume is indeterminant).} \end{cases}$

Latent state distinction - Out-of-sample

- Tayal (2009) finds that the relative frequency of the conditional returns is significantly different from the relative frequency of the unconditional returns.
- In our new application, there is enough evidence to argue that return characteristics vary per state as well.

Symbol	EFA	GLD	SPY	XLB	XLE	XLF	XLI	XLK	XLP	XLU	XLV	XLY
D	0.2980	0.2496	0.3160	0.2851	0.3144	0.3083	0.2263	0.2469	0.2667	0.3114	0.2506	0.2078
p-value	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Table 1: Two-sample Kolmogorov-Smirnov test. Null: the empirical cumulative conditional and unconditional distributions of out-of-sample returns are drawn from the same distribution. Alternative: two-sided.

- Tayal (2009) finds strong in-sample evidence in favor of the hypothesis for the most liquid half of Canadian stocks.
- In our new application, we also find in sample that the mean return in the bull state is greater than the mean return in the bear state.

	EFA	GLD	SPY	XLB	XLE	XLF	XLI	XLK	XLP	XLU	XLV	XLY
t	337.34	164.01	619.79	110.67	474.35	585.09	143.77	158.13	105.79	484.78	108.22	72.92
p-value	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{\mu}_{bull} - \hat{\mu}_{bear}$	0.37	0.22	0.31	0.19	0.48	0.49	0.24	0.2	0.16	0.5	0.15	0.12

Table 2: Two-sample unpaired t-test. Null: the mean of the distribution of out-of-sample bull returns is less or equal the mean of bear returns. Alternative: mean return conditional on bull state is greater than conditional on bear state. Some limitations to the test assumptions apply.

Regime return characteristics - Out-of-sample

- Tayal (2009) finds strong evidence to answer the question positively for **most** Canadian stocks.
- In our new application, no stock has statistically larger out-of-sample returns in bull states versus bear states.
 - States are interchanged out-of-sample!.
 - Some rather strong limitations to t-test assumptions apply (further research on a better comparison methodology needed).

	EFA	GLD	SPY	XLB	XLE	XLF	XLI	XLK	XLP	XLU	XLV	XLY
t	-27.86	-0.09	-29.71	-4.06	-18.94	-46.81	-7.23	-9.03	-6.06	-26.47	-1.07	-1.15
p-value	1.00	0.53	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.86	0.87
$\hat{\mu}_{\text{bull}} - \hat{\mu}_{\text{bear}}$	-0.2	0.00	-0.09	-0.06	-0.11	-0.25	-0.11	-0.11	-0.11	-0.18	-0.01	-0.02

Table 3: Two-sample unpaired t-test. Null: the mean of the distribution of out-of-sample bull returns is less or equal the mean of bear returns. Alternative: mean return conditional on bull state is greater than conditional on bear state. Some limitations to the test assumptions apply.

- Tayal (2009) finds strong evidence to answer the question positively for all Canadian stocks.
- In our new application, all stocks have statistically positive (negative) in-sample returns in bull (bear) states.

<u> </u>	554	61 D	6014	2/1 0	VI E	V/L E	2411	2/1.1/	241.0	2/1.1.1		20120
Symbol	EFA	GLD	SPY	XLB	XLE	XLF	XLI	XLK	XLP	XLU	XLV	XLY
t _{bear}	-238.68	-128.83	-455.47	-77.95	-345.89	-396.8	-131.58	-108.3	-88.14	-354.95	-70.24	-50.28
p-value	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{\mu}_{\text{bear}}$	-0.18	-0.13	-0.16	-0.09	-0.25	-0.22	-0.2	-0.09	-0.11	-0.27	-0.06	-0.06
t _{bull}	239.17	101.76	421.09	78.62	324.62	430.27	58.11	115.36	58.54	330.23	82.33	53.24
p-value	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\hat{\mu}_{bull}$	0.2	0.09	0.15	0.1	0.22	0.27	0.04	0.11	0.05	0.23	0.09	0.06

Table 4: One-sample t-test. Null: the distribution mean of out-of-sample bearish (bullish) returns is greater (less) or equal than zero. Alternative: the mean is less (greater) than zero. Some limitations to the test assumptions apply.

Regime return characteristics - Out-of-sample

- Tayal (2009) finds strong evidence in favor of the hypothesis for the most liquid half of Canadian stocks.
- In our new application, none has statistically positive (negative) returns in bull (bear) states.
 - There seems to be a misclassification problem in top states.
 - One strong limitations to t-test assumptions apply (further research on a better comparison methodology needed).

Symbol	EFA	GLD	SPY	XLB	XLE	XLF	XLI	XLK	XLP	XLU	XLV	XLY
t _{bear}	19.95	1.01	20.78	2.97	14.75	32.4	7.31	6.61	4.23	17.76	0.2	1.2
p-value	1	0.84	1	1	1	1	1	1	1	1	0.58	0.88
$\hat{\mu}_{\text{bear}}$	0.1	0.01	0.05	0.03	0.06	0.12	0.08	0.06	0.06	0.08	0.00	0.02
t _{bull}	-19.44	0.88	-21.23	-2.77	-12.04	-33.8	-2.91	-6.16	-4.33	-19.66	-1.31	-0.42
p-value	1	0.19	1	1	1	1	1	1	1	1	0.91	0.66
$\hat{\mu}_{bull}$	-0.1	0.01	-0.05	-0.03	-0.05	-0.13	-0.03	-0.05	-0.06	-0.09	-0.01	-0.01

Table 5: One-sample t-test. Null: the distribution mean of out-of-sample bearish (bullish) returns is greater (less) or equal than zero. Alternative: the mean is less (greater) than zero. Some limitations to the test assumptions apply.

Cont, Rama, Arseniy Kukanov, and Sasha Stoikov. 2014. "The Price Impact of Order Book Events." *Journal of Financial Econometrics* 12 (1). Oxford University Press: 47–88.

Domingos, Pedro. 2012. "A Few Useful Things to Know About Machine Learning." *Commun. ACM* 55 (10). New York, NY, USA: ACM: 78–87. doi:10.1145/2347736.2347755.

Easley, David, Marcos Lopez de Prado, and Maureen O'Hara. 2012. "The Volume Clock: Insights into the High Frequency Paradigm."

Tayal, Aditya. 2009. "Regime Switching and Technical Trading with Dynamic Bayesian Networks in High-Frequency Stock Markets." Master's thesis, University of Waterloo.