Rational Explanation for Rule-of-Thumb Practices in Asset Allocation

Majeed Simaan12 Yusif Simaan3

1Lally School of Management
Rensselaer Polytechnic Institute

2School of Business
Stevens Institute of Technology

3Gabelli School of Business
Fordham University

June 1st, 2018
R/Finance 2018 Annual Meeting
Chicago, IL
“Markowitz came along, and there was light”

-William F. Sharpe in Bernstein, 2011
Figure: Fama-French 17 Industry Portfolios
In/Out Sample MV Efficient Frontier (MVEF)

Figure: Fama-French 30 Industry Portfolios
In/Out Sample MV Efficient Frontier (MVEF)

Figure: Fama-French 48 Industry Portfolios
Figure: Largest 50 Market Cap S&P 500 Stocks
In/Out Sample MV Efficient Frontier (MVEF)

Figure: Second Largest 50 Market Cap S&P 500 Stocks
“Though Markowitz derived the [MVEF] more than 60 years ago, we still have no settled way to compute that frontier in real-world situations.” - Cochrane, 2014
“Though Markowitz derived the [MVEF] more than 60 years ago, we still have no settled way to compute that frontier in real-world situations.” - Cochrane, 2014

Simaan et al., 2017, for instance, show that for each point on the MVEF, there is a joint sampling distribution instead.

Figure: The sampling distribution of the MVEF using 10 years of data
“Though Markowitz derived the [MVEF] more than 60 years ago, we still have no settled way to compute that frontier in real-world situations.” - Cochrane, 2014

Simaan et al., 2017, for instance, show that for each point on the MVEF, there is a joint sampling distribution instead

Figure: The sampling distribution of the MVEF using 20 years of data
“Though Markowitz derived the [MVEF] more than 60 years ago, we still have no settled way to compute that frontier in real-world situations.” - Cochrane, 2014

Simaan et al., 2017, for instance, show that for each point on the MVEF, there is a joint sampling distribution instead.

Figure: The sampling distribution of the MVEF using 30 years of data
“Though Markowitz derived the [MVEF] more than 60 years ago, we still have no settled way to compute that frontier in real-world situations.” - Cochrane, 2014

Simaan et al., 2017, for instance, show that for each point on the MVEF, there is a joint sampling distribution instead.

Figure: The sampling distribution of the MVEF using 40 years of data
Estimation Error

- Estimation error \rightarrow poor out-of-sample performance, (see e.g. Michaud, 1989)
- Out-of-Sample Expected Utility (see e.g., Kan & Zhou, 2007)
- Shrinkage approaches?
 - Short-sale constraints (Jagannathan & Ma, 2003)
 - “Markowitz Meets Goldilocks” (Ledoit & Wolf, 2017)
- Should investors optimize?
 - $1/N$ naive portfolio by DeMiguel, Garlappi, & Uppal, 2009
 - “Markowitz meets Talmud” (Tu & Zhou, 2011)
This Research...

How to choose a portfolio under estimation error?

1. Bother estimating mean returns? (e.g., DeMiguel, Nogales, & Uppal, 2014)
2. Focus on variance alone? (e.g., Ledoit & Wolf, 2003)
3. Invest indifferently? (e.g., DeMiguel et al., 2009)

We derive a set of rules to answer the above

Our research provides a number of rational justification for common ad-hoc practices

- Risk-Parity
- Naive allocation
- Hierarchical allocation (decentralized portfolio choice)
The Framework - Full Information

- Under full information, the MV portfolio is given by

\[\xi = f(\mu, \Sigma) = \alpha_0 + \frac{1}{A} \alpha_1, \]

(1)

where

- \(\mu \) and \(\Sigma \) are the mean vector and covariance matrix of asset returns, respectively
- \(\alpha_0 \) is the global minimum variance portfolio (GMV)
- \(\alpha_1 \) is an arbitrage portfolio (weights sum to 0) that depends on \(\mu \) and \(\Sigma \)
- \(A \) is the investor’s risk aversion
The Framework - Full Information

- Under full information, the MV portfolio is given by

\[\xi = f(\mu, \Sigma) = \alpha_0 + \frac{1}{A} \alpha_1, \]

where

- \(\mu \) and \(\Sigma \) are the mean vector and covariance matrix of asset returns, respectively
- \(\alpha_0 \) is the global minimum variance portfolio (GMV)
- \(\alpha_1 \) is an arbitrage portfolio (weights sum to 0) that depends on \(\mu \) and \(\Sigma \)
- \(A \) is the investor’s risk aversion

Estimation Error

- In practice, \(\mu \) and \(\Sigma \) are unknown and are evaluated ex-ante
- The result of which induces estimation error into the paradigm
The Framework - Estimation Error

- Let m and S denote the sample estimates of μ and Σ, respectively
 - using a sample of the recent n periods

For a sample period $n+1$, the estimated portfolio is given by

$$X = X_0 + AX_1$$

with $X_0 = \hat{\alpha}_0$ and $X_1 = \hat{\alpha}_1$.

The vector of asset returns for the $n+1$ period is R, and the ex-post portfolio return is

$$r_p = X' R = r_0 + Ar_1$$

To draw economic conclusions about the impact of estimation error on the MVEF, we need to analyze the distribution of r_p.
Let \(m \) and \(S \) denote the sample estimates of \(\mu \) and \(\Sigma \), respectively using a sample of the recent \(n \) periods.

The estimated portfolio, thus, is given by

\[
X = f(m, S) = X_0 + \frac{1}{A} X_1
\] (2)

with \(X_0 = \hat{\alpha}_0 \) and \(X_1 = \hat{\alpha}_1 \).
The Framework - Estimation Error

- Let m and S denote the sample estimates of μ and Σ, respectively using a sample of the recent n periods.
- The estimated portfolio, thus, is given by
 \[X = f(m, S) = X_0 + \frac{1}{A}X_1 \]
 (2)
 with $X_0 = \hat{\alpha}_0$ and $X_1 = \hat{\alpha}_1$
- If R is the vector of asset returns for the $n + 1$ period, then
 \[r_p = X'R = r_0 + \frac{1}{A}r_1 \]
 (3)
 denotes the ex-post portfolio return.
Let \(m \) and \(S \) denote the sample estimates of \(\mu \) and \(\Sigma \), respectively, using a sample of the recent \(n \) periods.

The estimated portfolio, thus, is given by

\[
X = f(m, S) = X_0 + \frac{1}{A} X_1
\]

with \(X_0 = \hat{\alpha}_0 \) and \(X_1 = \hat{\alpha}_1 \)

If \(R \) is the vector of asset returns for the \(n + 1 \) period, then

\[
r_p = X' R = r_0 + \frac{1}{A} r_1
\]

denotes the ex-post portfolio return.

To draw economic conclusions about the impact of estimation error on the MVEF, we need to analyze the distribution of \(r_p \).
Constructing MVEF under Estimation Error

- Demonstration of the MVEF full information versus estimation risk
- MVEF was derived using the FF-48 industry data between Jan 1970 and Dec 2015

Figure: 10 years of data
Constructing MVEF under Estimation Error

- Demonstration of the MVEF full information versus estimation risk
- MVEF was derived using the FF-48 industry data between Jan 1970 and Dec 2015

Figure: 20 years of data
Constructing MVEF under Estimation Error

- Demonstration of the MVEF full information versus estimation risk
- MVEF was derived using the FF-48 industry data between Jan 1970 and Dec 2015

Figure: 30 years of data
Constructing MVEF under Estimation Error

- Demonstration of the MVEF full information versus estimation risk
- MVEF was derived using the FF-48 industry data between Jan 1970 and Dec 2015

Figure: 40 years of data
Step 1: MV versus GMV

The GMV portfolio is preferable to any portfolio on the MVE frontier, if

$$\frac{\sigma^2_{\mu}}{\sigma^2} < \frac{(1 - \rho)}{n - 1}$$

(4)

with $$\sigma^2_{\mu}$$ denoting the cross-sectional variation among the mean returns.

\(^a\) Condition is simplified for the case when correlation and volatilities are uniform.
Decision Rules under Estimation Risk

Step 1: MV versus GMV

- The GMV portfolio is preferable to any portfolio on the MVE frontier, if

\[
\frac{\sigma^2_\mu}{\sigma^2} < \frac{(1 - \rho)}{n - 1}
\]

with \(\sigma^2_\mu\) denoting the cross-sectional variation among the mean returns.

\(^a\) Condition is simplified for the case when correlation and volatilities are uniform.

Step 2: GMV versus Naive

- The naive portfolio is preferable to GMV if

\[
\frac{\sigma^2_N}{\sigma^2_0} < \frac{n}{n - d + 1}
\]

where \(\sigma^2_N\) (\(\sigma^2_0\)) is the naive (GMV) volatility.

\(^a\) Condition is simplified for the case when the mean returns are uniform.
Implementation

For a given dataset (d assets), do the following:

1. Starting at t (Aug 1986), use the recent $n \in \{60, 90, 120\}$ months to estimate (m, S)

2. Compute the MV X, GMV X_0, and naive X_N portfolios\(^a\)
 - X chosen as the maximum SR portfolio on the MVEF

3. Realize the next period return of each portfolio

4. Repeat the above steps until the end (Dec 2015) on a rolling basis

5. Finally, summarize performance using out-of-sample SR

\(^a\)Constraints on exposure to maximum/minimum individual asset allocation were deployed in the mixed strategy analysis only with respect to Jagannathan & Ma, 2003; Levy & Levy, 2014.
Out-of-Sample SR: GMV versus MV

- y and x axis denote the SR of GMV and MV, respectively.
- Dashed line is a 45-degrees line.
- Data is distinguished using shapes.
- Colors highlight sample size.
Out-of-Sample SR: GMV versus Naive

- y and x axis denote the SR of GMV and Naive, respectively.
- Dashed line is a 45-degrees line.
- Data is distinguished using shapes.
- Colors highlight sample size.
Implications from Condition 1

- y-axis is the difference in SR between MV and GMV
- x-axis is the LHS from Condition (4), i.e. σ_μ/σ
- Data is distinguished using colors
- Solid line is a fitted linear regression

Figure: $n = 60$ months
Implications from Condition 1

- y-axis is the difference in SR between MV and GMV
- x-axis is the LHS from Condition (4), i.e. σ_μ / σ
- Data is distinguished using colors
- Solid line is a fitted linear regression

Figure: $n = 120$ months
Implications from Condition 2

- y-axis is the difference in SR between GMV and Naive
- x-axis is the LHS from Condition (5), i.e. σ_N/σ_0
- Datasets are distinguished using colors
- Solid line is a fitted linear regression

Figure: $n = 60$ months
Implications from Condition 2

- y-axis is the difference in SR between GMV and Naive
- x-axis is the LHS from Condition (5), i.e. σ_N/σ_0
- Datasets are distinguished using colors
- Solid line is a fitted linear regression

Figure: $n = 120$ months
Mixed Strategy

Mixed Portfolio X_{π}

π_1

$1 - \pi_1$

MV Portfolio X

GMV Portfolio X_0

π_2

$1 - \pi_2$

GMV Portfolio X_0

Naive Portfolio X_N

Calibration

\[
\text{f.star <- function(PI) } \text{\{ }
+ \text{ Pi <- PI[1]}
+ \text{ Pi2 <- PI[2]}
+ \text{ X_pi <- Pi*X + (1-Pi)*(X0*Pi2 + (1-Pi2)*X_N)}
+ \text{ ret.pi <- as.matrix(RET12) %*% X_pi # RET12 - last 12 monthly returns}
+ \text{ return(-mean(ret.pi)/sd(ret.pi)) # negative SR}
\text{\}}
\]

\[
> \text{ Pi.star <- nlminb(runif(2), f.star,lower = c(0,0),upper = c(1,1))[[1]]}
\]
Mixed Strategy

Calibration

```r
> f.star <- function(PI) {
+   Pi <- PI[1]
+   Pi2 <- PI[2]
+   X_pi <- Pi*X + (1-Pi)*(X0*Pi2 + (1-Pi2)*X_N)
+   ret.pi <- as.matrix(RET12) %*% X_pi # RET12 - last 12 monthly returns
+   return(-mean(ret.pi)/sd(ret.pi)) # negative SR
+ }
>
> Pi.star <- nlminb(runif(2), f.star, lower = c(0,0), upper = c(1,1))[[1]]
```
Mixed Strategy - Performance Comparison

- y-axis is the difference in SR between the mixed strategy and each of the three portfolios
- From left to right, x-axis corresponds to the MV, GMV, and Naive portfolios
- Datasets are distinguished using colors
- Graph is created using geom_violin

Figure: All datasets and sample sizes
Mixed Strategy - Performance Comparison

- y-axis is the difference in SR between the mixed strategy and each of the three portfolios
- From left to right, x-axis corresponds to the MV, GMV, and Naive portfolios
- Datasets are distinguished using colors
- Graph is created using geom_violin

Figure: All sample sizes excluding stocks
Mixed Strategy - Performance Comparison

- **y-axis** is the difference in SR between the mixed strategy and each of the three portfolios.
- From left to right, **x-axis** corresponds to the MV, GMV, and Naive portfolios.
- Datasets are distinguished using colors.
- Graph is created using `geom_violin`.

Figure: \(n = 60 \) excluding stocks.
Mixed Strategy - Performance Comparison

- y-axis is the difference in SR between the mixed strategy and each of the three portfolios.
- From left to right, x-axis corresponds to the MV, GMV, and Naive portfolios.
- Datasets are distinguished using colors.
- Graph is created using geom_violin.

Figure: $n = 120$ excluding stocks
“Diversification is protection against ignorance. It makes little sense if you know what you are doing.”

-Warren Buffett
Concluding Remarks

“Diversification is protection against ignorance. It makes little sense if you know what you are doing.”

-Warren Buffett

- Optimization (naive allocation) makes sense if you know (don’t know) what you are doing
 - Industries are less prone to estimation error than individual stocks
 - Potential optimization among industries is more evident
 - Naive strategy dominates across stocks
 - Evidence supports hierarchical asset allocation
Concluding Remarks

“Diversification is protection against ignorance. It makes little sense if you know what you are doing.”

-Warren Buffett

- **Optimization (naive allocation)** makes sense if you **know (don’t know)** what you are doing
 - Industries are less prone to estimation error than individual stocks
 - Potential optimization among industries is more evident
 - Naive strategy dominates across stocks
 - Evidence supports hierarchical asset allocation

- *Further results are in progress...*
Thank You!

Stay in touch...

Email: simaan.finance@gmail.com
Linkedin: https://www.linkedin.com/in/majeed-simaan-85383045
GitHub: https://github.com/simaan84
Appendix - Empirical Results Without Position Constraints

The table reports the out-of-sample SR for each portfolio. The symbols $X > X_0$ (or $X > X_N$) denote the proportion of time that $X_\pi > X_0$ (or $X_\pi > X_N$).

Table:

<table>
<thead>
<tr>
<th>n</th>
<th>d</th>
<th>X</th>
<th>X_0</th>
<th>X_N</th>
<th>X_π</th>
<th>π_1</th>
<th>π_2</th>
<th>σ_{μ}/σ</th>
<th>σ_N/σ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>10</td>
<td>0.36</td>
<td>0.81</td>
<td>0.78</td>
<td>0.47</td>
<td>0.62</td>
<td>0.48</td>
<td>0.08</td>
<td>1.18</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>0.48</td>
<td>0.87</td>
<td>0.78</td>
<td>0.59</td>
<td>0.58</td>
<td>0.48</td>
<td>0.06</td>
<td>1.21</td>
</tr>
<tr>
<td>120</td>
<td>10</td>
<td>0.66</td>
<td>0.95</td>
<td>0.78</td>
<td>0.75</td>
<td>0.56</td>
<td>0.46</td>
<td>0.05</td>
<td>1.21</td>
</tr>
<tr>
<td>60</td>
<td>17</td>
<td>-0.17</td>
<td>0.50</td>
<td>0.70</td>
<td>-0.16</td>
<td>0.65</td>
<td>0.51</td>
<td>0.08</td>
<td>1.25</td>
</tr>
<tr>
<td>90</td>
<td>17</td>
<td>0.29</td>
<td>0.62</td>
<td>0.70</td>
<td>0.37</td>
<td>0.65</td>
<td>0.53</td>
<td>0.07</td>
<td>1.30</td>
</tr>
<tr>
<td>120</td>
<td>17</td>
<td>0.35</td>
<td>0.69</td>
<td>0.70</td>
<td>0.36</td>
<td>0.65</td>
<td>0.47</td>
<td>0.05</td>
<td>1.32</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>0.18</td>
<td>0.44</td>
<td>0.71</td>
<td>0.18</td>
<td>0.72</td>
<td>0.54</td>
<td>0.10</td>
<td>1.04</td>
</tr>
<tr>
<td>90</td>
<td>30</td>
<td>0.01</td>
<td>0.61</td>
<td>0.71</td>
<td>0.09</td>
<td>0.68</td>
<td>0.52</td>
<td>0.08</td>
<td>1.21</td>
</tr>
<tr>
<td>120</td>
<td>30</td>
<td>0.39</td>
<td>0.70</td>
<td>0.71</td>
<td>0.54</td>
<td>0.65</td>
<td>0.52</td>
<td>0.07</td>
<td>1.26</td>
</tr>
<tr>
<td>60</td>
<td>48</td>
<td>0.16</td>
<td>0.07</td>
<td>0.70</td>
<td>0.13</td>
<td>0.70</td>
<td>0.61</td>
<td>0.10</td>
<td>0.69</td>
</tr>
<tr>
<td>90</td>
<td>48</td>
<td>0.13</td>
<td>0.20</td>
<td>0.70</td>
<td>0.09</td>
<td>0.68</td>
<td>0.57</td>
<td>0.08</td>
<td>1.04</td>
</tr>
<tr>
<td>120</td>
<td>48</td>
<td>0.33</td>
<td>0.43</td>
<td>0.70</td>
<td>0.46</td>
<td>0.65</td>
<td>0.54</td>
<td>0.07</td>
<td>1.18</td>
</tr>
<tr>
<td>60</td>
<td>50B</td>
<td>0.18</td>
<td>0.48</td>
<td>0.98</td>
<td>0.18</td>
<td>0.73</td>
<td>0.59</td>
<td>0.10</td>
<td>0.56</td>
</tr>
<tr>
<td>90</td>
<td>50B</td>
<td>-0.05</td>
<td>0.62</td>
<td>0.98</td>
<td>0.01</td>
<td>0.66</td>
<td>0.50</td>
<td>0.08</td>
<td>0.90</td>
</tr>
<tr>
<td>120</td>
<td>50B</td>
<td>0.03</td>
<td>0.65</td>
<td>0.98</td>
<td>0.20</td>
<td>0.64</td>
<td>0.48</td>
<td>0.06</td>
<td>1.02</td>
</tr>
<tr>
<td>60</td>
<td>50S</td>
<td>0.01</td>
<td>0.45</td>
<td>0.89</td>
<td>-0.05</td>
<td>0.72</td>
<td>0.71</td>
<td>0.10</td>
<td>0.57</td>
</tr>
<tr>
<td>90</td>
<td>50S</td>
<td>0.14</td>
<td>0.69</td>
<td>0.89</td>
<td>0.17</td>
<td>0.71</td>
<td>0.50</td>
<td>0.07</td>
<td>0.85</td>
</tr>
<tr>
<td>120</td>
<td>50S</td>
<td>0.06</td>
<td>0.71</td>
<td>0.89</td>
<td>0.15</td>
<td>0.67</td>
<td>0.53</td>
<td>0.06</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Appendix - Empirical Results With Position Constraints

<table>
<thead>
<tr>
<th>n</th>
<th>d</th>
<th>X</th>
<th>X_0</th>
<th>X_N</th>
<th>X_π</th>
<th>π_1</th>
<th>π_2</th>
<th>σ_μ/σ</th>
<th>σ_N/σ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>10</td>
<td>0.79</td>
<td>0.86</td>
<td>0.78</td>
<td>0.83</td>
<td>0.37</td>
<td>0.70</td>
<td>0.08</td>
<td>1.09</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>0.80</td>
<td>0.86</td>
<td>0.78</td>
<td>0.83</td>
<td>0.32</td>
<td>0.70</td>
<td>0.06</td>
<td>1.10</td>
</tr>
<tr>
<td>120</td>
<td>10</td>
<td>0.79</td>
<td>0.87</td>
<td>0.78</td>
<td>0.86</td>
<td>0.27</td>
<td>0.72</td>
<td>0.05</td>
<td>1.09</td>
</tr>
<tr>
<td>60</td>
<td>17</td>
<td>0.72</td>
<td>0.80</td>
<td>0.70</td>
<td>0.75</td>
<td>0.47</td>
<td>0.73</td>
<td>0.08</td>
<td>1.15</td>
</tr>
<tr>
<td>90</td>
<td>17</td>
<td>0.74</td>
<td>0.77</td>
<td>0.70</td>
<td>0.77</td>
<td>0.41</td>
<td>0.70</td>
<td>0.07</td>
<td>1.14</td>
</tr>
<tr>
<td>120</td>
<td>17</td>
<td>0.74</td>
<td>0.79</td>
<td>0.70</td>
<td>0.78</td>
<td>0.40</td>
<td>0.70</td>
<td>0.05</td>
<td>1.14</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>0.78</td>
<td>0.84</td>
<td>0.71</td>
<td>0.89</td>
<td>0.48</td>
<td>0.73</td>
<td>0.10</td>
<td>1.25</td>
</tr>
<tr>
<td>90</td>
<td>30</td>
<td>0.75</td>
<td>0.86</td>
<td>0.71</td>
<td>0.86</td>
<td>0.45</td>
<td>0.74</td>
<td>0.08</td>
<td>1.23</td>
</tr>
<tr>
<td>120</td>
<td>30</td>
<td>0.78</td>
<td>0.89</td>
<td>0.71</td>
<td>0.89</td>
<td>0.43</td>
<td>0.70</td>
<td>0.07</td>
<td>1.24</td>
</tr>
<tr>
<td>60</td>
<td>48</td>
<td>0.76</td>
<td>0.79</td>
<td>0.70</td>
<td>0.95</td>
<td>0.51</td>
<td>0.74</td>
<td>0.10</td>
<td>1.36</td>
</tr>
<tr>
<td>90</td>
<td>48</td>
<td>0.76</td>
<td>0.79</td>
<td>0.70</td>
<td>0.80</td>
<td>0.50</td>
<td>0.73</td>
<td>0.08</td>
<td>1.34</td>
</tr>
<tr>
<td>120</td>
<td>48</td>
<td>0.83</td>
<td>0.86</td>
<td>0.70</td>
<td>0.86</td>
<td>0.46</td>
<td>0.72</td>
<td>0.07</td>
<td>1.32</td>
</tr>
<tr>
<td>60</td>
<td>50B</td>
<td>0.87</td>
<td>0.83</td>
<td>0.98</td>
<td>0.74</td>
<td>0.47</td>
<td>0.71</td>
<td>0.10</td>
<td>1.18</td>
</tr>
<tr>
<td>90</td>
<td>50B</td>
<td>0.87</td>
<td>0.89</td>
<td>0.98</td>
<td>0.87</td>
<td>0.59</td>
<td>0.64</td>
<td>0.08</td>
<td>1.19</td>
</tr>
<tr>
<td>120</td>
<td>50B</td>
<td>0.92</td>
<td>0.90</td>
<td>0.98</td>
<td>0.89</td>
<td>0.50</td>
<td>0.60</td>
<td>0.06</td>
<td>1.18</td>
</tr>
<tr>
<td>60</td>
<td>50S</td>
<td>0.79</td>
<td>0.91</td>
<td>0.89</td>
<td>0.96</td>
<td>0.34</td>
<td>0.83</td>
<td>0.10</td>
<td>1.23</td>
</tr>
<tr>
<td>90</td>
<td>50S</td>
<td>0.82</td>
<td>0.85</td>
<td>0.89</td>
<td>0.84</td>
<td>0.48</td>
<td>0.70</td>
<td>0.07</td>
<td>1.21</td>
</tr>
<tr>
<td>120</td>
<td>50S</td>
<td>0.83</td>
<td>0.87</td>
<td>0.89</td>
<td>0.82</td>
<td>0.46</td>
<td>0.67</td>
<td>0.06</td>
<td>1.23</td>
</tr>
</tbody>
</table>

- Table reports the out-of-sample SR for each portfolio
- π_1 (π_2) denote the proportion of time that $X \succ X_0$ ($X_0 \succ X_N$)
- $X_\pi = \pi_1X + (1 - \pi_1)(\pi_2X_0 + (1 - \pi_2)X_N)$

