Trading the Untradable
Pricing Derivatives when Prices are not Observable

Thomas P. Harte (joint with Axel Buchner†)

†University of Passau, Germany

R/Finance 2018
University of Illinois at Chicago
Saturday, 2018-06-02
Thomas P. Harte and Axel Buchner ("the Authors") are providing this presentation and its contents ("the Content") for educational purposes only at the *R in Finance Conference*, 2018-06-02, Chicago, IL. Neither of the Authors is a registered investment advisor and neither of the Authors purports to offer investment advice nor business advice.

THE AUTHORS SPECIFICALLY DISCLAIM ANY PERSONAL LIABILITY, LOSS OR RISK INCURRED AS A CONSEQUENCE OF THE USE AND APPLICATION, EITHER DIRECTLY OR INDIRECTLY, OF THE CONTENT. THE AUTHORS SPECIFICALLY DISCLAIM ANY REPRESENTATION, WHETHER EXPLICIT OR IMPLIED, THAT APPLYING THE CONTENT WILL LEAD TO SIMILAR RESULTS IN A BUSINESS SETTING. THE RESULTS PRESENTED IN THE CONTENT ARE NOT NECESSARILY TYPICAL AND SHOULD NOT DETERMINE EXPECTATIONS OF FINANCIAL OR BUSINESS RESULTS.
Contents

1. Disclaimer

2. **Introduction**

3. Options on PE Funds: The Black Scholes Way

4. Options on PE Funds: Incomplete Markets

5. Leveraged Buyout Fund Dynamics

6. Options on PE Funds: Pricing the real thing

7. Conclusions

8. References
Untradable assets
More properly: *Untraded* assets
Introduction

Trading the Untradable: Pricing Derivatives when Prices are not Observable

We're used to a Black Scholes world:
- no arbitrage
- cash-flow replication
- perfect hedging
- complete markets
- unique prices

Markets are not complete

But if we expand our pricing tools...

New opportunities to trade

Thomas P. Harte (joint with Axel Buchner) (†University of Passau, Germany)
Untraded assets
Untraded assets

We’re used to a Black Scholes world
Untraded assets

We’re used to a Black Scholes world
 - no arbitrage
Untraded assets

We’re used to a Black Scholes world
 - no arbitrage
 - cash-flow replication
Untraded assets

We’re used to a Black Scholes world
- no arbitrage
- cash-flow replication
- perfect hedging
Untraded assets
We’re used to a Black Scholes world
- no arbitrage
- cash-flow replication
- perfect hedging
- complete markets
Untraded assets

We’re used to a Black Scholes world
- no arbitrage
- cash-flow replication
- perfect hedging
- complete markets
- unique prices
Untraded assets

We’re used to a Black Scholes world
 - no arbitrage
 - cash-flow replication
 - perfect hedging
 - complete markets
 - unique prices

Markets are not complete
Untraded assets
We’re used to a Black Scholes world
- no arbitrage
- cash-flow replication
- perfect hedging
- complete markets
- unique prices
Markets are not complete
But if we expand our pricing tools...
Untraded assets

- We’re used to a Black Scholes world
 - no arbitrage
 - cash-flow replication
 - perfect hedging
 - complete markets
 - unique prices

- Markets are not complete
- But if we expand our pricing tools...
- New opportunities to trade
Options on a PE index

- PE indexes already exist
Options on a PE index

- PE indexes already exist: the snag is that we can’t trade them
Options on a PE index

- PE indexes already exist: the snag is that we can’t trade them
- What if we built an index that could be replicated with publicly traded instruments?
Recent empirical studies on PE performance (see [1], [3] and [2]):

- Returns can be decomposed into a component that can be replicated by traded factors (β) and an additional return premium (α) that is not spanned by publicly traded factors.

Assume that the return of an individual private equity fund i at any time t, $r_{i,t}$, is given by the following factor model:

$$r_{i,t} = r_{f,t} + \alpha_i + \beta' F_t + \epsilon_{i,t},$$

where $F_t = [F_1, F_2, \ldots, F_J]$ is a set of J common tradable factors in the public markets. $r_{f,t}$ is the return on the riskless asset. β_i contains the loadings on the common factors. α_i reflects the level of private-equity returns in excess of its systematic (and liquid) component of the return of fund i. $\epsilon_{i,t}$ is a manager-specific latent factor with mean zero that is orthogonal to the traded factors, F_t. This idiosyncratic (and therefore "unsystematic") risk of fund i potentially makes fund i non-redundant in (and not representable by) the space of tradable assets.
Recent empirical studies on PE performance (see [1], [3] and [2]):

Returns can be decomposed into a component that can be replicated by traded factors (β) *and an additional return premium* (α) *that is not spanned by publicly traded factors.*
Returns model

- Recent empirical studies on PE performance (see [1], [3] and [2]):

 Returns can be decomposed into a component that can be replicated by traded factors (β) and an additional return premium (α) that is not spanned by publicly traded factors

- Assume that $r_{i,t}$, the return of an individual private equity fund i at any time t, is given by the following factor model:

 $$
 r_{i,t} = r_{f,t} + \alpha_{i,t} + \beta_i'F_t + \varepsilon_{i,t},
 $$

 (1)

 where $F_t = [F_{1,t}, F_{2,t}, ..., F_{J,t}]$ is a set of J common *tradable* factors in the public markets. $r_{f,t}$ is the return on the riskless asset. β_i contains the loadings on the common factors, F_t. $\alpha_{i,t}$ reflects the level of private-equity returns in excess of its systematic (and liquid) component of the return of fund i. $\varepsilon_{i,t}$ is a manager-specific latent factor with mean zero that is orthogonal to the traded factors, F_t. This idiosyncratic (and therefore “unsystematic”) risk of fund i potentially makes fund i non-redundant in (and not representable by) the space of tradable assets.
Returns model

- We will model the *entire segment of private equity* and assume that this segment consists of a sufficiently large number of funds M.
Returns model

- We will model the *entire segment of private equity* and assume that this segment consists of a sufficiently large number of funds M.
- Since $\Sigma_{i=1}^{M} \varepsilon_{i,t} \approx 0$, when M is large, we can express the returns of the segment of private-equity funds by the model:

$$r_t = r_{f,t} + \alpha_t + \beta' F_t$$ \hspace{1cm} (2)
We will model the *entire segment of private equity* and assume that this segment consists of a sufficiently large number of funds M.

Since $\sum_{i=1}^{M} \varepsilon_{i,t} \approx 0$, when M is large, we can express the returns of the segment of private-equity funds by the model:

$$r_t = r_{f,t} + \alpha_t + \beta' F_t$$ \hspace{1cm} (2)

The returns of the *entire private-equity segment* are fully spanned by traded assets, and the risks can be perfectly hedged by dynamically trading the public assets and the risk-free asset.
We will model the *entire segment of private equity* and assume that this segment consists of a sufficiently large number of funds M.

Since $\sum_{i=1}^{M} \varepsilon_{i,t} \approx 0$, when M is large, we can express the returns of the segment of private-equity funds by the model:

$$ r_t = r_{f,t} + \alpha_t + \beta F_t \quad \text{(2)} $$

The returns of the *entire private-equity segment* are fully spanned by traded assets, and the risks can be perfectly hedged by dynamically trading the public assets and the risk-free asset.

The entire segment of private equity does not involve any remaining non-spannable risk.
Returns model

- We will model the *entire segment of private equity* and assume that this segment consists of a sufficiently large number of funds M.

- Since $\sum_{i=1}^{M} \varepsilon_{i,t} \approx 0$, when M is large, we can express the returns of the segment of private-equity funds by the model:

$$ r_t = r_{f,t} + \alpha_t + \beta' F_t \tag{2} $$

- The returns of the *entire private-equity segment* are fully spanned by traded assets, and the risks can be perfectly hedged by dynamically trading the public assets and the risk-free asset.

- The entire segment of private equity does not involve any remaining non-spannable risk.

- This is almost identical to the usual assumptions in complete markets, e.g. for trading an option on a publicly traded stock.
Returns model

- We will model the *entire segment of private equity* and assume that this segment consists of a sufficiently large number of funds M.
- Since $\sum_{i=1}^{M} \epsilon_{i,t} \approx 0$, when M is large, we can express the returns of the segment of private-equity funds by the model:

 $$ r_t = r_{f,t} + \alpha_t + \beta' F_t $$

- The returns of the *entire private-equity segment* are fully spanned by traded assets, and the risks can be perfectly hedged by dynamically trading the public assets and the risk-free asset.
- The entire segment of private equity does not involve any remaining non-spannable risk.
- This is almost identical to the usual assumptions in complete markets, *e.g.* for trading an option on a publicly traded stock.
- This *differs* from the usual assumption in complete markets in the following ways:
Returns model

- We will model the *entire segment of private equity* and assume that this segment consists of a sufficiently large number of funds M.

- Since $\sum_{i=1}^{M} \varepsilon_{i,t} \approx 0$, when M is large, we can express the returns of the segment of private-equity funds by the model:

$$r_t = r_{f,t} + \alpha_t + \beta' F_t$$

- The returns of the *entire private-equity segment* are fully spanned by traded assets, and the risks can be perfectly hedged by dynamically trading the public assets and the risk-free asset.
- The entire segment of private equity does not involve any remaining non-spannable risk.
- This is almost identical to the usual assumptions in complete markets, e.g. for trading an option on a publicly traded stock.
- This *differs* from the usual assumption in complete markets in the following ways: Under full spanning, the risk of the private-equity segment is traded in the market, but the private-equity segment can still earn a positive alpha, as shown in Equation (2). In contrast, under complete markets, this alpha would be arbitraged away. We assume that this arbitrage does not happen because the fund managers generate the alpha, and the investors can only earn it by investing in the private-equity segment along with the associated costs.
Index construction

To illustrate, assume that private equity returns are generated by the standard market model:

\[r_t = r_{f,t} + \alpha_t + \beta_m (r_{m,t} - r_{f,t}), \]

where \(r_{m,t} \) is the return of a traded stock-market index and \(\beta_m \) is the beta coefficient of the entire private-equity segment.
Index construction

To illustrate, assume that private equity returns are generated by the standard market model:

$$r_t = r_{f,t} + \alpha_t + \beta_m (r_{m,t} - r_{f,t}),$$ \hspace{1cm} (3)

where $r_{m,t}$ is the return of a traded stock-market index and β_m is the beta coefficient of the entire private-equity segment.

Volatility of the stock market σ_m equals 20%
To illustrate, assume that private equity returns are generated by the standard market model:

\[r_t = r_{f,t} + \alpha_t + \beta_m (r_{m,t} - r_{f,t}), \]

(3)

where \(r_{m,t} \) is the return of a traded stock-market index and \(\beta_m \) is the beta coefficient of the entire private-equity segment.

- Volatility of the stock market \(\sigma_m \) equals 20%.
- With probability \(p = 50\% \), the market either appreciates by

\[u - 1 = e^{+\sigma_m \sqrt{t}} - 1 = 22\% \]

(4)

or depreciates by

\[1 - d = 1 - e^{-\sigma_m \sqrt{t}} = 18\% \]

(5)
To illustrate, assume that private equity returns are generated by the standard market model:

\[r_t = r_{f,t} + \alpha_t + \beta_m (r_{m,t} - r_{f,t}), \]

where \(r_{m,t} \) is the return of a traded stock-market index and \(\beta_m \) is the beta coefficient of the entire private-equity segment.

Volatility of the stock market \(\sigma_m \) equals 20%.

With probability \(p = 50\% \), the market either appreciates by

\[u - 1 = e^{+ \sigma_m \sqrt{1}} - 1 = 22\% \]

or depreciates by

\[1 - d = 1 - e^{- \sigma_m \sqrt{1}} = 18\% \]

We further assume a constant riskless rate of \(r_f = 2\% \) per period.
Index construction

- To illustrate, assume that private equity returns are generated by the standard market model:

\[r_t = r_{f,t} + \alpha_t + \beta_m (r_{m,t} - r_{f,t}), \]

where \(r_{m,t} \) is the return of a traded stock-market index and \(\beta_m \) is the beta coefficient of the entire private-equity segment.

- Volatility of the stock market \(\sigma_m \) equals 20%.

- With probability \(p = 50\% \), the market either appreciates by

\[u - 1 = e^{+\sigma_m \sqrt{1}} - 1 = 22\% \]

or depreciates by

\[1 - d = 1 - e^{-\sigma_m \sqrt{1}} = 18\% \]

- We further assume a constant riskless rate of \(r_f = 2\% \) per period.

- The risk-neutral probability of an up-movement of the index is given by

\[q = \frac{e^r - d}{u - d} = 0.5 \]

The stock-market index (which is publicly traded) starts at \(S_0 = 1,000 \) at \(t = 0 \).
Figure: Stock-market process in a three-step binomial tree (we can trade this)
Figure: Cash-flow process for the private-equity segment with a market beta of 1.5 and an alpha equal to 3%, i.e. $\beta_m = 1.5$ and $\alpha = 0.03$.
Private-equity process

Figure: Private-equity process (the constructed index: we can’t trade this!)
Figure: Cash-flow process for a European call struck at $K = \$100$ with maturity $T = 3$ written on the private-equity process (i.e. on the constructed index: we can trade this!)
Why does this work?

- Three up-movements in the cash flow equals $136.38. Two up-movements and one down movement equals $29.20
Why does this work?

- Three up-movements in the cash flow equals $136.38. Two up-movements and one down movement equals $29.20.
- We can replicate these cash flows with an investment in the stock market and the riskless asset:

\[\Delta uu = C_{uuu} - C_{uud} (u - d) S_{uu} = \$136.38 - \$29.20 (1.22 - 0.82) \times \$1,491.82 = \$0.18 \]
Why does this work?

- Three up-movements in the cash flow equals $136.38. Two up-movements and one down movement equals $29.20.
- We can replicate these cash flows with an investment in the stock market and the riskless asset:
 \[
 \Delta_{uu} = \frac{C_{uuu} - C_{uud}}{(u - d)S_{uu}} = \frac{$136.38 - $29.20}{(1.22 - 0.82) \times \$1,491.82} = 0.18
 \]
 into the stock market index
Why does this work?

• Three up-movements in the cash flow equals $136.38. Two up-movements and one down movement equals $29.20
• We can replicate these cash flows with an investment in the stock market and the riskless asset:

\[\Delta_{uu} = \frac{C_{uuu} - C_{uud}}{(u - d)S_{uu}} = \frac{136.38 - 29.20}{(1.22 - 0.82) \times 1,491.82} = 0.18 \]

1. into the stock market index

\[B_{uu} = \frac{uC_{uud} - dC_{uuu}}{(u - d)\exp(r)} = -184.99 \]

2. into the riskless asset
Why does this work?

- Three up-movements in the cash flow equals $136.38. Two up-movements and one down movement equals $29.20
- We can replicate these cash flows with an investment in the stock market and the riskless asset:
 \[
 \Delta_{uu} = \frac{C_{uuu} - C_{uud}}{(u - d)S_{uu}} = \frac{136.38 - 29.20}{(1.22 - 0.82) \times 1,491.82} = 0.18 \quad (7)
 \]
 into the stock market index
 \[
 B_{uu} = \frac{uC_{uud} - dC_{uuu}}{(u - d)\exp(r)} = -184.99 \quad (8)
 \]
 into the riskless asset
- The value of this replicating portfolio in case of two up-movements in the tree equals $81.19. Working backwards in the tree, the initial value of the call turns out to be $26.41
Why does this work?

- Three up-movements in the cash flow equals $136.38. Two up-movements and one down movement equals $29.20.
- We can replicate these cash flows with an investment in the stock market and the riskless asset:
 \[
 \Delta_{uu} = \frac{C_{uuu} - C_{uud}}{(u - d)S_{uu}} = \frac{136.38 - 29.20}{(1.22 - 0.82) \times 1,491.82} = 0.18
 \]
 into the stock market index

\[
B_{uu} = \frac{uC_{uud} - dC_{uuu}}{(u - d)\exp(r)} = -184.99
\]
 into the riskless asset

- The value of this replicating portfolio in case of two up-movements in the tree equals $81.19. Working backwards in the tree, the initial value of the call turns out to be $26.41.
- Note that we can replicate the option here with an investment into the traded stock-market index (and not the untraded private equity index) and an investment into the riskless asset even though the private equity index has an alpha of 3% and a beta equal to 1.5.
Markets are incomplete

- We’re used to a Black Scholes world
 - no arbitrage
 - cash-flow replication
 - perfect hedging
 - complete markets
 - unique prices

But markets are not complete—even the “usual” markets!

What tools can we use to deal with incomplete markets?

Can we create new opportunities to trade?
We’re used to a Black Scholes world
- no arbitrage
- cash-flow replication
- perfect hedging
- complete markets
- unique prices

But markets are not complete—even the “usual” markets!
Markets are incomplete

- We’re used to a Black Scholes world
 - no arbitrage
 - cash-flow replication
 - perfect hedging
 - complete markets
 - unique prices

- But markets are not complete—even the “usual” markets!
- What tools can we use to deal with incomplete markets?
Markets are incomplete

- We’re used to a Black Scholes world
 - no arbitrage
 - cash-flow replication
 - perfect hedging
 - complete markets
 - unique prices
- But markets are not complete—even the “usual” markets!
- What tools can we use to deal with incomplete markets?
- Can we create new opportunities to trade?
Rubinstein’s model

- We use Rubinstein’s equilibrium model [5] to discount uncertain payoffs
Rubinstein’s model

- We use Rubinstein’s equilibrium model [5] to discount uncertain payoffs
- Called the “Stochastic Discount Factor” in the economics literature
We use Rubinstein’s equilibrium model [5] to discount uncertain payoffs.

Called the “Stochastic Discount Factor” in the economics literature.

The valuation of uncertain income streams and the pricing of options

Mark Rubinstein
Assistant Professor
Graduate School of Business Administration
University of California, Berkeley

A simple formula is developed for the valuation of uncertain income streams consistent with rational risk averse investor behavior and equilibrium in financial markets. Applying this formula to the pricing of an option as a function of its associated stock, the Black-Scholes formula is derived even though investors can only trade at discrete points in time.
Rubinstein’s model (the Stochastic Discount Factor)

- Markets are frictionless
Rubinstein’s model (the Stochastic Discount Factor)

- Markets are frictionless
- An investor is infinitely lived and chooses lifetime consumption and investment plans, subject to budget constraints, to maximize lifetime expected utility U, as represented by the time-separable power utility function:

$$U = \sum_{t=0}^{\infty} \delta^t E\left[\frac{C_t^{1-\gamma}}{1-\gamma}\right],$$

(9)

where C_t denotes consumption at time t, $\delta > 0$ is a measure of the investor’s time preference, and $\gamma \geq 0$ is the investor’s constant coefficient of relative risk aversion.
Rubinstein’s model (the Stochastic Discount Factor)

- Markets are frictionless
- An investor is infinitely lived and chooses lifetime consumption and investment plans, subject to budget constraints, to maximize lifetime expected utility U, as represented by the time-separable power utility function:

$$U = \sum_{t=0}^{\infty} \delta^t E \left[\frac{C_t^{1-\gamma}}{1-\gamma} \right], \quad (9)$$

where C_t denotes consumption at time t, $\delta > 0$ is a measure of the investor’s time preference, and $\gamma \geq 0$ is the investor’s constant coefficient of relative risk aversion.

- Rubinstein shows that the present value PV_0 of any security that generates an uncertain future cash flow stream X_t can be found by

$$PV_0 = \sum_{t=1}^{\infty} E[X_t] - \lambda_t \text{corr}[X_t, -(1 + r_{m,t})^{-\gamma}] \text{std}[X_t] \frac{1}{1 + r_{f,t}}, \quad (10)$$

where $r_{f,t}$ and $r_{m,t}$ are, respectively, the returns of a riskless asset and of the market portfolio over the time interval $(0, t)$; corr[x, y] is the correlation of x and y; std[·] is standard deviation; and $\lambda_t = \text{std}[(1 + r_{m,t})^{-\gamma}] / E[(1 + r_{m,t})^{-\gamma}]$.
Rubinstein’s model (the Stochastic Discount Factor)

Inserting λ_t into (10) yields

$$PV_0 = \sum_{t=1}^{\infty} \frac{E[X_t]E[(1 + r_{m,t})^{-\gamma}] - \text{corr}[X_t, -(1 + r_{m,t})^{-\gamma}] \text{std}[X_t] \text{std}[(1 + r_{m,t})^{-\gamma}]}{(1 + r_{f,t})E[(1 + r_{m,t})^{-\gamma}]}.$$

(11)

By noting that $\text{corr}[X_t, -(1 + r_{m,t})^{-\gamma}] = -\text{corr}[X_t, (1 + r_{m,t})^{-\gamma}]$, the second term in the numerator can be expressed in terms of the covariance $\text{cov}[X_t, (1 + r_{m,t})^{-\gamma}]$. This gives

$$PV_0 = \sum_{t=1}^{\infty} \frac{E[X_t]E[(1 + r_{m,t})^{-\gamma}] + \text{cov}[X_t, (1 + r_{m,t})^{-\gamma}]}{(1 + r_{f,t})E[(1 + r_{m,t})^{-\gamma}]}.$$

(12)

Using the identity,

$$E[X_t]E[(1 + r_{m,t})^{-\gamma}] + \text{cov}[X_t, (1 + r_{m,t})^{-\gamma}] \equiv E[X_t/(1 + r_{m,t})^\gamma],$$

Equation (12) simplifies to

$$PV_0 = \sum_{t=1}^{\infty} \frac{E[X_t/(1 + r_{m,t})^\gamma]}{(1 + r_{f,t})E[(1 + r_{m,t})^{-\gamma}]}.$$

(13)
Since Equation (13) also holds for the market portfolio, Rubinstein shows that $1 + r_{f,t} = E[(1 + r_{m,t})^{1-\gamma}]/E[(1 + r_{m,t})^{-\gamma}]$. Inserting this into Equation (13) gives

$$PV_0 = \sum_{t=1}^{\infty} \frac{E[X_t/(1 + r_{m,t})^\gamma]}{E[(1 + r_{m,t})^{1-\gamma}]}.$$ (14)
Rubinstein’s model (the Stochastic Discount Factor)

Since Equation (13) also holds for the market portfolio, Rubinstein shows that \(1 + r_{t,t} = E[(1 + r_{m,t})^{1-\gamma}] / E[(1 + r_{m,t})^{-\gamma}] \). Inserting this into Equation (13) gives

\[
P V_0 = \sum_{t=1}^{\infty} \frac{E[X_t/(1 + r_{m,t})^{\gamma}]}{E[(1 + r_{m,t})^{1-\gamma}]}.
\] (14)

Equation (14) is a simple and practical formula for the valuation of uncertain income streams, consistent with rational risk averse investor behavior and equilibrium in financial markets. The formula does not require any assumption on the covariance \(\text{cov}[X_t, (1 + r_{m,t})^{-\gamma}] \), since this covariance is implicitly contained in the expectation \(E[X_t/(1 + r_{m,t})^{\gamma}] \). The valuation thus reduces to computing expectations, e.g. for a call option struck at \(K \):
Since Equation (13) also holds for the market portfolio, Rubinstein shows that $1 + r_{t,t} = E[(1 + r_{m,t})^{1-\gamma}] / E[(1 + r_{m,t})^{-\gamma}]$. Inserting this into Equation (13) gives

$$PV_0 = \sum_{t=1}^{\infty} \frac{E[X_t/(1 + r_{m,t})^\gamma]}{E[(1 + r_{m,t})^{1-\gamma}]}.$$ (14)

Equation (14) is a simple and practical formula for the valuation of uncertain income streams, consistent with rational risk averse investor behavior and equilibrium in financial markets. The formula does not require any assumption on the covariance $\text{cov}[X_t, (1 + r_{m,t})^{-\gamma}]$, since this covariance is implicitly contained in the expectation $E[X_t/(1 + r_{m,t})^\gamma]$. The valuation thus reduces to computing expectations, e.g. for a call option struck at K:

$$\hat{C}_n = \frac{1}{n} \sum_{i=1}^{n} \frac{\max(S_T^{(i)} - K, 0)/(1 + r_{m,T}^{(i)})^\gamma}{\frac{1}{n} \sum_{i=1}^{n} (1 + r_{m,T}^{(i)})^{1-\gamma}}.$$ (15)
Options on PE Funds: Incomplete Markets

Canonical Black Scholes
15.8 BLACK–SCHOLES–MERTON PRICING FORMULAS

The most famous solutions to the differential equation (15.16) are the Black–Scholes–Merton formulas for the prices of European call and put options. These formulas are:

\[c = S_0 N(d_1) - Ke^{-rT} N(d_2) \] \hspace{0.5cm} (15.20)

and

\[p = Ke^{-rT} N(-d_2) - S_0 N(-d_1) \] \hspace{0.5cm} (15.21)
15.8 BLACK–SCHOLES–MERTON PRICING FORMULAS

The most famous solutions to the differential equation (15.16) are the Black–Scholes–Merton formulas for the prices of European call and put options. These formulas are:

\[c = S_0 N(d_1) - Ke^{-rT} N(d_2) \]
\[p = Ke^{-rT} N(-d_2) - S_0 N(-d_1) \]

Example 15.6

The stock price 6 months from the expiration of an option is $42, the exercise price of the option is $40, the risk-free interest rate is 10% per annum, and the volatility is 20% per annum. This means that \(S_0 = 42, K = 40, r = 0.1, \sigma = 0.2, T = 0.5, \)
Canonical Black Scholes in R

```r
'bs.test' <- function() {
  # Hull (2009), "Options, Futures and Other Derivative Securities",

  d1 <- bs.d1(S0=42, K=40, T=0.5, sigma=0.2, r=0.1)
  d1.out <- sprintf("%.4f", d1)
  cat(sprintf("d1 = %s\n", d1.out))
  assert(d1.out == "0.7693")

  d2 <- bs.d2(S0=42, K=40, T=0.5, sigma=0.2, r=0.1)
  d2.out <- sprintf("%.4f", d2)
  cat(sprintf("d2 = %s\n", d2.out))
  assert(d2.out == "0.6278")

  c <- bs.call(S0=42, K=40, T=0.5, sigma=0.2, r=0.1)
  c.out <- sprintf("%.2f", c)
  cat(sprintf("c = %s\n", c.out))
  assert(c.out == "4.76")

  p <- bs.put(S0=42, K=40, T=0.5, sigma=0.2, r=0.1)
  p.out <- sprintf("%.2f", p)
  cat(sprintf("p = %s\n", p.out))
  assert(p.out == "0.81")
}
bs.test()
```

Call price = $4.76. Put price = $0.81.
Figure: Using the Rubinstein model to estimate the value of a put (bottom, in black) and a call (top, in blue) in Hull’s [4, Example 15.6, p. 338, et sqq.], where $S_0 = $40, $K = $42, $r = 0.1, $\sigma = 0.2, T = 0.5$. The gray lines represent the closed-form solutions given by the Black Scholes model [4, p. 339], viz.: Call = $4.76; put = $0.81.
Stochastic Volatility

Stochastic volatility violates Black Scholes:

\[dS_t = \mu S_t S_t dt + \sqrt{V_t} S_t dB_{S,t} \] \hspace{1cm} (16)

\[dV_t = \kappa (\theta - V_t) dt + \sigma_v \sqrt{V_t} dB_{V,t} \] \hspace{1cm} (17)

where \(B_{S,t} \) and \(B_{V,t} \) are correlated standard Brownian motions, i.e.,

\[dB_{S,t} dB_{V,t} = \rho_{SV} dt \]
Stochastic volatility violates Black Scholes:

Figure: Using the Rubinstein model to estimate the value of a put (bottom, in black) and a call (top, in blue) in Hull’s [4, Example 15.6, p. 338, et sqq.], where $S_0 = $40, $K = $42, $r = 0.1$, $\sigma = 0.2$, $T = 0.5$; here the stochastic process S has stochastic volatility but with parameters $\theta = \sigma_S^2$, $\kappa = 1$, and $\sigma_Y = 10^{-5}$, i.e., parameters that render the volatility almost constant (this lets us compare to the constant-volatility case in Figure 5). The gray lines represent the closed-form solutions given by the Black Scholes model [4, p. 339], viz.: Call = $4.76; put = $0.81.
(Lots of) stochastic volatility

Figure: Using the Rubinstein model to estimate the value of a put (bottom, in black) and a call (top, in blue) in Hull’s [4, Example 15.6, p. 338, et sqq.], where $S_0 = $40, $K = $42, $r = 0.1$, $\sigma = 0.2$, $T = 0.5$. Here the stochastic process S has stochastic volatility with parameters $\theta = 0.1$, $\kappa = 0.5$, and $\sigma_V = 0.05$. The gray lines represent the closed-form solutions given by the Black Scholes model [4, p. 339], viz.: Call = $4.76; put = $0.81.
Contents

1 Disclaimer

2 Introduction

3 Options on PE Funds: The Black Scholes Way

4 Options on PE Funds: Incomplete Markets

5 Leveraged Buyout Fund Dynamics

6 Options on PE Funds: Pricing the real thing

7 Conclusions

8 References
One simulation

<table>
<thead>
<tr>
<th>Qtr</th>
<th>D</th>
<th>R</th>
<th>V</th>
<th>NIC</th>
<th>MF</th>
<th>dNCF</th>
<th>IRR</th>
<th>CI</th>
<th>dTF</th>
<th>dMOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.80</td>
<td>0.00</td>
<td>7.70</td>
<td>88.50</td>
<td>0.50</td>
<td>-8.30</td>
<td>-1</td>
<td>0.00</td>
<td>0.44</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>17.40</td>
<td>0.03</td>
<td>13.80</td>
<td>88.50</td>
<td>1.00</td>
<td>-10.11</td>
<td>-1</td>
<td>0.00</td>
<td>0.54</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>22.40</td>
<td>0.42</td>
<td>16.60</td>
<td>88.50</td>
<td>1.50</td>
<td>-5.04</td>
<td>-1</td>
<td>0.00</td>
<td>0.28</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>23.60</td>
<td>0.42</td>
<td>19.90</td>
<td>88.50</td>
<td>2.00</td>
<td>-1.70</td>
<td>-1</td>
<td>0.00</td>
<td>0.07</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>31.70</td>
<td>0.42</td>
<td>25.10</td>
<td>88.50</td>
<td>2.50</td>
<td>-8.69</td>
<td>-1</td>
<td>0.00</td>
<td>0.46</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>35.10</td>
<td>0.42</td>
<td>30.90</td>
<td>88.50</td>
<td>3.00</td>
<td>-3.84</td>
<td>-1</td>
<td>0.00</td>
<td>0.19</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>41.90</td>
<td>3.37</td>
<td>34.70</td>
<td>88.50</td>
<td>3.50</td>
<td>-4.40</td>
<td>-1</td>
<td>0.00</td>
<td>0.38</td>
<td>0.24</td>
</tr>
<tr>
<td>8</td>
<td>45.90</td>
<td>3.37</td>
<td>50.80</td>
<td>88.50</td>
<td>4.00</td>
<td>-4.48</td>
<td>-1</td>
<td>0.00</td>
<td>0.22</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>51.90</td>
<td>10.07</td>
<td>66.50</td>
<td>88.50</td>
<td>4.50</td>
<td>0.19</td>
<td>-1</td>
<td>0.00</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>10</td>
<td>54.20</td>
<td>10.65</td>
<td>93.40</td>
<td>88.50</td>
<td>5.00</td>
<td>-2.14</td>
<td>-1</td>
<td>0.00</td>
<td>0.12</td>
<td>0.05</td>
</tr>
<tr>
<td>11</td>
<td>54.20</td>
<td>25.58</td>
<td>90.10</td>
<td>88.50</td>
<td>5.50</td>
<td>14.43</td>
<td>-1</td>
<td>0.00</td>
<td>0.00</td>
<td>1.19</td>
</tr>
<tr>
<td>12</td>
<td>54.20</td>
<td>36.07</td>
<td>81.10</td>
<td>88.50</td>
<td>6.00</td>
<td>9.99</td>
<td>-1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.84</td>
</tr>
<tr>
<td>13</td>
<td>55.60</td>
<td>47.60</td>
<td>61.20</td>
<td>88.50</td>
<td>6.50</td>
<td>5.82</td>
<td>-1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.51</td>
</tr>
<tr>
<td>14</td>
<td>55.60</td>
<td>52.39</td>
<td>54.30</td>
<td>88.50</td>
<td>7.00</td>
<td>5.82</td>
<td>-1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.51</td>
</tr>
<tr>
<td>15</td>
<td>56.30</td>
<td>64.79</td>
<td>54.40</td>
<td>88.50</td>
<td>7.50</td>
<td>5.82</td>
<td>-1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.51</td>
</tr>
<tr>
<td>16</td>
<td>60.00</td>
<td>65.98</td>
<td>41.30</td>
<td>88.50</td>
<td>8.00</td>
<td>10.83</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.97</td>
</tr>
<tr>
<td>17</td>
<td>60.90</td>
<td>74.73</td>
<td>48.20</td>
<td>88.50</td>
<td>8.50</td>
<td>-2.96</td>
<td>-1</td>
<td>0.00</td>
<td>0.20</td>
<td>0.09</td>
</tr>
<tr>
<td>18</td>
<td>62.70</td>
<td>90.32</td>
<td>35.80</td>
<td>88.50</td>
<td>9.00</td>
<td>7.31</td>
<td>-1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.70</td>
</tr>
<tr>
<td>19</td>
<td>62.80</td>
<td>93.12</td>
<td>69.50</td>
<td>88.50</td>
<td>9.50</td>
<td>13.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>1.25</td>
</tr>
<tr>
<td>20</td>
<td>62.80</td>
<td>93.12</td>
<td>69.50</td>
<td>88.50</td>
<td>10.00</td>
<td>9.99</td>
<td>-1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.84</td>
</tr>
<tr>
<td>21</td>
<td>62.80</td>
<td>93.12</td>
<td>69.50</td>
<td>88.50</td>
<td>10.40</td>
<td>6.62</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.60</td>
</tr>
<tr>
<td>22</td>
<td>66.90</td>
<td>99.13</td>
<td>56.40</td>
<td>75.10</td>
<td>10.90</td>
<td>-1.20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.39</td>
<td>0.48</td>
</tr>
<tr>
<td>23</td>
<td>69.50</td>
<td>103.55</td>
<td>40.40</td>
<td>69.20</td>
<td>11.30</td>
<td>4.05</td>
<td>0.15</td>
<td>0.71</td>
<td>0.00</td>
<td>0.35</td>
</tr>
<tr>
<td>24</td>
<td>71.10</td>
<td>107.88</td>
<td>31.50</td>
<td>61.80</td>
<td>11.60</td>
<td>2.45</td>
<td>0.16</td>
<td>0.71</td>
<td>0.09</td>
<td>0.34</td>
</tr>
<tr>
<td>25</td>
<td>72.10</td>
<td>120.34</td>
<td>22.60</td>
<td>37.30</td>
<td>11.90</td>
<td>11.07</td>
<td>0.20</td>
<td>4.07</td>
<td>0.06</td>
<td>0.99</td>
</tr>
<tr>
<td>26</td>
<td>77.90</td>
<td>123.59</td>
<td>24.20</td>
<td>32.00</td>
<td>12.10</td>
<td>-2.72</td>
<td>0.19</td>
<td>5.19</td>
<td>0.03</td>
<td>0.18</td>
</tr>
<tr>
<td>27</td>
<td>78.40</td>
<td>125.96</td>
<td>27.30</td>
<td>28.80</td>
<td>12.30</td>
<td>1.72</td>
<td>0.19</td>
<td>5.19</td>
<td>0.03</td>
<td>0.18</td>
</tr>
<tr>
<td>28</td>
<td>79.90</td>
<td>130.91</td>
<td>30.00</td>
<td>24.60</td>
<td>12.40</td>
<td>2.46</td>
<td>0.20</td>
<td>5.19</td>
<td>0.08</td>
<td>0.32</td>
</tr>
<tr>
<td>29</td>
<td>81.60</td>
<td>131.25</td>
<td>23.50</td>
<td>23.50</td>
<td>12.50</td>
<td>-0.61</td>
<td>0.20</td>
<td>5.19</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>30</td>
<td>82.40</td>
<td>138.79</td>
<td>31.10</td>
<td>17.00</td>
<td>12.60</td>
<td>6.62</td>
<td>0.21</td>
<td>7.76</td>
<td>0.05</td>
<td>0.60</td>
</tr>
</tbody>
</table>

A single sample drawn from 100,000 Monte Carlo simulations of a leveraged-buyout fund structure with $C_0 = 100$. Columns are as follows:

- **Qtr**: the calendar quarter (1 thru 40)
- **D**: the cumulative drawdowns (in $)
- **R**: the cumulative distributions (in $)
- **NIC**: the net invested capital (in $)
- **MF**: the GP’s (fixed) management fees (in $)
- **dNCF**: the instantaneous change in net cash flow (in $)
- **IRR**: the internal rate of return for this quarter; a value of -1 indicates that the IRR is not available for that quarter
- **CI**: the cumulative GP’s carried interest (in $); the carried-interest is called when IRR > 8%
- **dTF**: the instantaneous change in the GP’s carried interest (in $)
- **dMOF**: the instantaneous change in the GP’s monitoring fees (in $)
A PE fund’s life cycle

1. GP forms a new fund
2. GP raises capital from LPs
3. LP commits C_0 in capital for T_L
4. GP draws on each LP’s C_0 for T_I, where $I \leq L$
5. GP invests in portfolio companies throughout T_I
6. GP harvests investments at any time $0 < t \leq T_L$
7. GP exacts fees from LPs’ committed capital (some fixed, some variable)
8. GP distributes proceeds according to the fund’s waterfall
9. GP fully liquidates the fund at some time $0 \leq t \leq T_L$
A PE fund’s life cycle

- Capital drawdowns, or calls
- Capital distributions, or returns
- Fund value
- Net cash distribution
A PE fund’s life cycle

- Capital drawdowns, or calls

![PE Capital Drawdowns](image)

- Capital distributions, or returns

- Fund value
A PE fund’s life cycle

- Capital drawdowns, or calls
- Capital distributions, or returns

Fund value
A PE fund’s life cycle

- Capital drawdowns, or calls
- Capital distributions, or returns
- Fund value

![Graph showing PE value over time](image)
A PE fund’s life cycle

- Capital drawdowns, or calls
- Capital distributions, or returns
- Fund value
- Net cash distribution
Fund value

- Let V_t denote the value of the fund at time t
- Let D_t denote the cumulative capital drawdowns from the LPs up to time t
- Let R_t denote the cumulative capital distributions to the LPs up to time t
- $B_{M,t}$ is a standard Brownian motion driving aggregate stock market returns, such that $r_{M,t} = \mu_M + \sigma_M dB_{M,t}$, where μ_M is the mean rate of return of the aggregate stock market ("the market"), and σ_M is the returns volatility of the market
- $B_{\epsilon,t}$ is a second Brownian motion, representing idiosyncratic shocks to the fund, where $dB_{M,t}dB_{\epsilon,t} = 0$, the mean rate of return of the idiosyncratic shocks is zero, and σ_ϵ is the volatility of the idiosyncratic shocks

Assumption

The dynamics of the fund value, V_t, under the real-world probability measure \mathbb{P}, can be described by the stochastic process $\{V_t, 0 \leq t \leq T_L\}$:

$$dV_t = V_t\left(\mu_V dt + \beta_V \sigma_M dB_{M,t} + \sigma_\epsilon dB_{\epsilon,t}\right) + dD_t - dR_t,$$

where $\mu_V > 0$ is the mean rate of return of the fund, and β_V is the market beta of the fund.
Leveraged Buyout Fund Dynamics

Capital drawdowns

- Let l_0 be the capital available for investment, i.e. C_0 less fees. For simplicity we can at first assume that $l_0 = C_0$

Assumption

The dynamics of the cumulative capital drawdowns, D_t, can be described by the ordinary differential equation:

$$\frac{dD_t}{dt} = \delta_t(l_0 - D_t)1_{\{0 \leq t \leq T\}} dt,$$

where $1_{\{\cdot\}}$ is an indicator function. The fund's drawdown rate δ_t is assumed to follow a stochastic process $\{\delta_t, 0 \leq t \leq T\}$ given by:

$$\delta_t = \delta + \sigma_{\delta} B_{\delta,t},$$

where $\delta > 0$ is the mean of the drawdown rate, $\sigma_{\delta} > 0$ is the volatility of the drawdown rate; $B_{\delta,t}$ is a third standard Brownian motion for which it is assumed that $dB_{\delta,t}dB_{M,t} = \rho_{\delta} dt$, where ρ_{δ} is the correlation between drawdown rate and stock market returns, and $dB_{\delta,t}dB_{\varepsilon,t} = 0$. In order to avoid negative drawdown rates, we use $\delta_t^+ = \max(\delta_t, 0)$ in the model implementation.
The dynamics of the cumulative capital distributions, R_t, can be described by:

$$\frac{dR_t}{dt} = \nu_t V_t dt, \quad \text{for} \quad t < T_L,$$

and

$$R_t = V_t 1_{\{t = T_L\}} + \int_0^t \nu_u V_u du, \quad \text{for} \quad t \leq T_L$$

Assumption

The fund's distribution rate ν_t is assumed to follow a stochastic process $\{\nu_t, 0 \leq t \leq T_L\}$ given by:

$$\nu_t = \nu t + \sigma_\nu B_{\nu,t},$$

where ν is the mean distribution rate, and $\sigma_\nu > 0$ is the volatility of the distribution rate; $B_{\nu,t}$ is a fourth standard Brownian motion for which it is assumed that

$$dB_{\nu,t} dB_{\nu,M,t} = \rho_\nu dt,$$

where ρ_ν is the correlation between the drawdown rate and stock market returns, and $dB_{\nu,t} dB_{\nu,\varepsilon,t} = 0$. In order to avoid negative distributions rates, we use $\nu_t^+ = \max(\nu_t, 0)$ in the model implementation.
Leveraged Buyout Fund Dynamics

Manager compensation

GPs typically receive three types of compensation for managing the investments:

1. A performance-related component called “carried interest” or simply “carry”. Carry ranges from 0% to 50%, but sharply peaked around 20% (ample data to support)

2. A (typically fixed) fee called the “management fee”. The fixed fee is usually charged quarterly; annualized, the fee ranges from 1% to 3%, but it is sharply peaked around 2% (Ample data to support vanilla flat fees, not so the more exotic combinations)

3. A fixed fee for setting up the fund (anecdotal evidence: usually a flat fee—up to 1% of the committed capital?)

4. Fees charged to the portfolio companies (Leveraged Buyout Funds):
 - transaction fees (anecdotal evidence: 1.37%)
 - monitoring fees (anecdotal evidence: 2%)

1 Metrick, A. and Yasuda, A. (2010) “The Economics of Private Equity Funds”, Review of Financial Studies, 23 (6), p. 2315. The fund may cap this fee (also known as the “establishment cost”) at a flat $1 MM.

2 ibid. p. 2319, et seq.

3 ibid. p. 2319, et seq.
Management fees

- The management fee is levied against a basis: this is usually either the committed capital, C_0, or the net invested capital ("NIC"),\(^4\) and it is one of four different types that is specified in the limited partnership agreement ("LPA"):
 1. flat fee
 2. tapered fee: tapers after the investment period, $T_I < t \leq T_L$
 3. change basis to NIC after investment period with flat fee\(^5\)
 4. change basis to NIC after investment period with tapered fee

- Let MF_t denote the cumulative management fees up to some time $t \in [0, T_L]$.

Fixed Management Fees: If management fees are defined as a percentage c_{MF} of the committed capital C_0 and are paid continuously, the dynamics are given by:

$$dMF_t = c_{MF}C_0dt$$

Management Fees with Change in Basis: Latterly, tapered management fees appear to be gaining in popularity. The tapering typically begins after the investment period, \textit{i.e.} for $T_I < t \leq T_L$, and reflects the fact that less time is required by the GP in managing the activities of the portfolio companies. Many funds change the fee basis from committed capital (during the commitment period) to NIC capital (after the commitment period).

\(^4\)Invested capital minus the cost basis of exited investments, \textit{ibid.} p. 2315, \textit{et seq.}

\(^5\)\textit{ibid.} p. 2315, \textit{et seq.}
Management fees: basis change to NIC requires *ex ante* computation

- If *ab initio* the basis for management-fee calculation is agreed to change from committed capital, C_0, for $0 \leq t \leq T_I$, to NIC for $T_I < t \leq T_L$, then how do GPs determine I_C, the capital available for investment, for $t \leq T_I$? Is it specified in the LPA?

We use an iterative algorithm to arrive at the NIC (convergence is rapid):

1. Set the initial guess for NIC to C_0
2. Subtract the fixed management fees applicable for $t \leq T_I$, which we know at $t = 0$ to follow:
 \[dMF_t = c_{MF} C_0 dt \quad 0 \leq t \leq T_I \]
 the value of NIC for $t = T_I$ is then initialized to $C_0 - MF_{T_I}$
3. The dynamics of management fees for $T_I < t \leq T_L$ are assumed to follow:
 \[dMF_t = c_{MF} NIC_t dt \quad T_I < t \leq T_L \]
4. The fund’s distribution rate, ν_t, is assumed to follow a stochastic process \{\nu_t, 0 \leq t \leq T_L\} given by $\nu_t = \nu t + \sigma_{\nu} B_{\nu,t}$, as per Equation 20, and this rate is applied to the NIC to give its dynamics as:
 \[dNIC_t = \nu_t NIC_t dt \]
5. Finally, we can solve for the invested capital I_C, by noting\(^6\) that at $t = 0$ it must be the case that $I_C = C_0 - \text{NPV}(MF_{T_I}) - \text{NPV}(MF_{T_L})$, where the last term can be expressed as $x \times I_C$ for some fraction x

\(^6\) As Metrick & Yasuda suggest, *ibid.* p. 2309, *et seq.*
Let C_I_t denote the cumulative carried interest up to some time $t \in [0, T_L]$

Carried Interest: Let the carried interest level be given by c_{CI} and let h denote the hurdle rate. The dynamics of carried interest are given by:

$$dC_I_t = c_{CI} \max\left\{ dR_t - dD_t - dMF_t, \ 0 \right\} 1\{\text{IRR}_t > h\}$$

where $1\{\text{IRR}_t > h\}$ indicates that carried interest is only payable at time t if the internal rate of return of the fund at t, IRR_t, exceeds the hurdle rate h

Catch-up provision: Most LPAs that contain a hurdle rate also include a provision that provides the GPs with a greater share of the profits once the hurdle rate has been paid and until the carry level has been reached.
Carried interest with catch-up: If the carried interest is paid with a 100% catch-up provision, then its dynamics are given by:

\[
d_{CI_t} = \begin{cases}
 c_{CI} \max \left\{ d_{NCF_t}, 0 \right\} 1_{\{\text{IRR}_t > h\}}, & \text{if } CI_t / (R_t - C_0) = c_{CI} \\
 \min \left\{ c_{CI}(R_t - C_0) - CI_t, d_{NCF_t} \right\} 1_{\{\text{IRR}_t > h\}}, & \text{if } CI_t (R_t - C_0) < c_{CI}
\end{cases}
\]

where \(d_{NCF_t} = dR_t - dD_t - dMF_t \)
Let \(MoF_t \) denote the cumulative monitoring fees paid up to time \(t \in [0, T_L] \) and assume that monitoring fees are paid at exit as a fraction \(c_{MoF} \) of the total firm value.

If \(s_F \) denotes the (average) share the fund holds in its portfolio companies, the **dynamics of the monitoring fees** can be modeled by:

\[
dMoF_t = c_{MoF} dR_t \times \left(\frac{1 + l}{s_F} \right)
\]

(26)

We use the typical sharing rule and allocate 20% of the monitoring fees to the GP and 80% to the LPs, *i.e.* \(dMoF_t^{(LP)} = 0.8 \times dMoF_t \) and \(dMoF_t^{(GP)} = 0.2 \times dMoF_t \).
Table: Parameters used in model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life of the PE fund investment (years)</td>
<td>T_L</td>
<td>10</td>
</tr>
<tr>
<td>Simulation frequency (years)</td>
<td>d_t</td>
<td>1/4</td>
</tr>
<tr>
<td>Committed capital (US dollars)</td>
<td>C_0</td>
<td>100</td>
</tr>
<tr>
<td>Risk-free rate</td>
<td>r_f</td>
<td>0.05%</td>
</tr>
<tr>
<td>Expected return of stock market</td>
<td>μ_M</td>
<td>0.10</td>
</tr>
<tr>
<td>Volatility of stock market returns</td>
<td>σ_M</td>
<td>0.15</td>
</tr>
<tr>
<td>Alpha of PE funds</td>
<td>α</td>
<td>0.075</td>
</tr>
<tr>
<td>Market beta of PE funds</td>
<td>β_M</td>
<td>1.30</td>
</tr>
<tr>
<td>Idiosyncratic volatility of PE fund returns</td>
<td>σ_ε</td>
<td>0.35</td>
</tr>
<tr>
<td>Drawdown rate of PE funds</td>
<td>δ</td>
<td>0.34%</td>
</tr>
<tr>
<td>Volatility of the drawdown rate</td>
<td>σ_δ</td>
<td>0.27</td>
</tr>
<tr>
<td>Correlation between drawdown rate and stock market returns</td>
<td>ρ_δ</td>
<td>0.30</td>
</tr>
<tr>
<td>Average distribution rate</td>
<td>ν</td>
<td>0.07%</td>
</tr>
<tr>
<td>Volatility of the distribution rate</td>
<td>σ_ν</td>
<td>0.16</td>
</tr>
<tr>
<td>Correlation between distribution rate and stock market returns</td>
<td>ρ_ν</td>
<td>0.50</td>
</tr>
<tr>
<td>Management fee</td>
<td>c_{MF}</td>
<td>2%</td>
</tr>
<tr>
<td>Hurdle rate</td>
<td>h</td>
<td>8%</td>
</tr>
<tr>
<td>Carried interest</td>
<td>c_{CI}</td>
<td>20%</td>
</tr>
<tr>
<td>Transaction fees</td>
<td>c_{TF}</td>
<td>1.4%</td>
</tr>
<tr>
<td>Monitoring fees</td>
<td>c_{MoF}</td>
<td>2%</td>
</tr>
<tr>
<td>Leverage (debt-to-equity ratio)</td>
<td>l</td>
<td>3</td>
</tr>
</tbody>
</table>

Model parameters are stated as annualized units, except where indicated.
Options on PE Funds: Pricing the real thing

Back to that simulation

<table>
<thead>
<tr>
<th>Qtr</th>
<th>D</th>
<th>R</th>
<th>V</th>
<th>NIC</th>
<th>MF</th>
<th>dNCF</th>
<th>IRR</th>
<th>CI</th>
<th>dTF</th>
<th>dMOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.8</td>
<td>0.0</td>
<td>7.7</td>
<td>88.5</td>
<td>0.5</td>
<td>-8.3</td>
<td>-1</td>
<td>0.0</td>
<td>0.44</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>17.4</td>
<td>0.03</td>
<td>13.8</td>
<td>88.5</td>
<td>1.0</td>
<td>-10.11</td>
<td>-1</td>
<td>0.0</td>
<td>0.54</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>22.4</td>
<td>0.42</td>
<td>16.6</td>
<td>88.5</td>
<td>1.5</td>
<td>-5.04</td>
<td>-1</td>
<td>0.0</td>
<td>0.28</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>23.6</td>
<td>0.42</td>
<td>19.9</td>
<td>88.5</td>
<td>2.0</td>
<td>-1.70</td>
<td>-1</td>
<td>0.0</td>
<td>0.07</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>31.7</td>
<td>0.42</td>
<td>25.1</td>
<td>88.5</td>
<td>2.5</td>
<td>-8.69</td>
<td>-1</td>
<td>0.0</td>
<td>0.46</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>35.1</td>
<td>0.42</td>
<td>30.9</td>
<td>88.5</td>
<td>3.0</td>
<td>-3.84</td>
<td>-1</td>
<td>0.0</td>
<td>0.19</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>41.9</td>
<td>3.37</td>
<td>34.7</td>
<td>88.5</td>
<td>3.5</td>
<td>-4.40</td>
<td>-1</td>
<td>0.0</td>
<td>0.38</td>
<td>0.24</td>
</tr>
<tr>
<td>8</td>
<td>45.9</td>
<td>3.37</td>
<td>50.8</td>
<td>88.5</td>
<td>4.0</td>
<td>-4.48</td>
<td>-1</td>
<td>0.0</td>
<td>0.22</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>51.9</td>
<td>10.07</td>
<td>66.3</td>
<td>88.5</td>
<td>4.5</td>
<td>0.19</td>
<td>-1</td>
<td>0.0</td>
<td>0.46</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>54.2</td>
<td>10.65</td>
<td>93.4</td>
<td>88.5</td>
<td>5.0</td>
<td>-2.14</td>
<td>-1</td>
<td>0.0</td>
<td>0.12</td>
<td>0.05</td>
</tr>
<tr>
<td>11</td>
<td>54.2</td>
<td>25.58</td>
<td>90.1</td>
<td>88.5</td>
<td>5.5</td>
<td>14.43</td>
<td>-1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.19</td>
</tr>
<tr>
<td>12</td>
<td>54.2</td>
<td>36.07</td>
<td>81.1</td>
<td>88.5</td>
<td>6.0</td>
<td>9.99</td>
<td>-1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.42</td>
</tr>
<tr>
<td>13</td>
<td>55.6</td>
<td>47.60</td>
<td>61.2</td>
<td>88.5</td>
<td>6.5</td>
<td>5.82</td>
<td>-1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.51</td>
</tr>
<tr>
<td>14</td>
<td>55.6</td>
<td>52.39</td>
<td>54.3</td>
<td>88.5</td>
<td>7.0</td>
<td>3.28</td>
<td>-1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.41</td>
</tr>
<tr>
<td>15</td>
<td>55.6</td>
<td>64.79</td>
<td>54.4</td>
<td>88.5</td>
<td>7.5</td>
<td>10.83</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.97</td>
</tr>
<tr>
<td>16</td>
<td>60.0</td>
<td>65.98</td>
<td>41.3</td>
<td>88.5</td>
<td>8.0</td>
<td>-2.96</td>
<td>-1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.09</td>
</tr>
<tr>
<td>17</td>
<td>60.9</td>
<td>74.73</td>
<td>48.2</td>
<td>88.5</td>
<td>8.5</td>
<td>7.31</td>
<td>0.04</td>
<td>0.0</td>
<td>0.0</td>
<td>0.42</td>
</tr>
<tr>
<td>18</td>
<td>62.7</td>
<td>90.32</td>
<td>93.4</td>
<td>88.5</td>
<td>9.0</td>
<td>5.82</td>
<td>-1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.05</td>
</tr>
<tr>
<td>19</td>
<td>62.8</td>
<td>93.12</td>
<td>31.4</td>
<td>88.5</td>
<td>9.5</td>
<td>2.25</td>
<td>0.14</td>
<td>0.0</td>
<td>0.0</td>
<td>0.01</td>
</tr>
<tr>
<td>20</td>
<td>62.8</td>
<td>93.12</td>
<td>39.6</td>
<td>88.5</td>
<td>10.0</td>
<td>-0.44</td>
<td>0.13</td>
<td>0.0</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>62.9</td>
<td>99.13</td>
<td>54.4</td>
<td>88.5</td>
<td>10.5</td>
<td>-1.20</td>
<td>0.13</td>
<td>0.0</td>
<td>0.0</td>
<td>0.48</td>
</tr>
<tr>
<td>22</td>
<td>69.5</td>
<td>103.55</td>
<td>69.2</td>
<td>69.2</td>
<td>11.3</td>
<td>4.05</td>
<td>0.15</td>
<td>0.71</td>
<td>0.00</td>
<td>0.35</td>
</tr>
<tr>
<td>23</td>
<td>71.1</td>
<td>107.88</td>
<td>61.8</td>
<td>61.8</td>
<td>11.6</td>
<td>2.45</td>
<td>0.16</td>
<td>0.71</td>
<td>0.09</td>
<td>0.34</td>
</tr>
<tr>
<td>24</td>
<td>72.1</td>
<td>120.34</td>
<td>37.3</td>
<td>37.3</td>
<td>11.9</td>
<td>11.07</td>
<td>0.20</td>
<td>4.07</td>
<td>0.06</td>
<td>0.99</td>
</tr>
<tr>
<td>25</td>
<td>77.9</td>
<td>123.59</td>
<td>24.2</td>
<td>24.2</td>
<td>12.1</td>
<td>-2.72</td>
<td>0.19</td>
<td>4.07</td>
<td>0.32</td>
<td>0.26</td>
</tr>
<tr>
<td>26</td>
<td>78.4</td>
<td>125.96</td>
<td>28.8</td>
<td>28.8</td>
<td>12.3</td>
<td>1.72</td>
<td>0.19</td>
<td>5.19</td>
<td>0.03</td>
<td>0.18</td>
</tr>
<tr>
<td>27</td>
<td>79.9</td>
<td>130.01</td>
<td>24.6</td>
<td>24.6</td>
<td>12.4</td>
<td>2.46</td>
<td>0.20</td>
<td>5.19</td>
<td>0.08</td>
<td>0.32</td>
</tr>
<tr>
<td>28</td>
<td>81.6</td>
<td>131.25</td>
<td>23.5</td>
<td>23.5</td>
<td>12.5</td>
<td>-0.61</td>
<td>0.20</td>
<td>5.19</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>29</td>
<td>82.4</td>
<td>138.79</td>
<td>31.0</td>
<td>31.0</td>
<td>12.6</td>
<td>6.62</td>
<td>0.21</td>
<td>7.76</td>
<td>0.06</td>
<td>0.60</td>
</tr>
</tbody>
</table>

A single sample drawn from 100,000 Monte Carlo simulations of a leveraged-buyout fund structure with \(C_0 = $100 \). Columns are as follows:

- **Qtr**: the calendar quarter (1 thru 40)
- **D**: the cumulative drawdowns (in $)
- **R**: the cumulative distributions (in $)
- **NIC**: the net invested capital (in $)
- **MF**: the GP’s (fixed) management fees (in $)
- **dNCF**: the instantaneous change in net cash flow (in $)
- **dTF**: the instantaneous change in the GP’s carried interest (in $)
- **dMOF**: the instantaneous change in the GP’s monitoring fees (in $)
- **IRR**: the internal rate of return for this quarter; a value of -1 indicates that the IRR is not available for that quarter
- **CI**: the cumulative GP’s carried interest (in $); the carried-interest is called when IRR > 8%

Thomas P. Harte (joint with Axel Buchner) († University of Passau, Germany)

Trading the Untradable
Options on a leveraged buyout fund

<table>
<thead>
<tr>
<th>Qtr</th>
<th>D</th>
<th>R</th>
<th>V</th>
<th>NIC</th>
<th>MF</th>
<th>dNCF</th>
<th>IRR</th>
<th>CI</th>
<th>dTF</th>
<th>dMOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>86.60</td>
<td>198.06</td>
<td>0.00</td>
<td>0.00</td>
<td>13.10</td>
<td>25.14</td>
<td>0.28</td>
<td>19.61</td>
<td>0.02</td>
<td>2.03</td>
</tr>
</tbody>
</table>
Options on PE Funds: Pricing the real thing

Options on a leveraged buyout fund

<table>
<thead>
<tr>
<th>Qtr</th>
<th>D</th>
<th>R</th>
<th>V</th>
<th>NIC</th>
<th>MF</th>
<th>dNCF</th>
<th>IRR</th>
<th>CI</th>
<th>dTF</th>
<th>dMOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>86.60</td>
<td>198.06</td>
<td>0.00</td>
<td>0.00</td>
<td>13.10</td>
<td>25.14</td>
<td>0.28</td>
<td>19.61</td>
<td>0.02</td>
<td>2.03</td>
</tr>
</tbody>
</table>

- Price of a call and a put on the cash multiple (i.e. R/C_0) struck at 1.0 with maturity in $T = T_L = 10$ years (where the coefficient of risk aversion is $\gamma = 5$):

Call: 0.09 ± 0.0032

Put: 0.32 ± 0.0119

- Price of a call and a put on the carried interest struck at $K = 10$ with maturity in $T = T_L = 10$ years (where the coefficient of risk aversion is $\gamma = 5$):

Call: 0.44 ± 0.0183

Put: 10.27 ± 0.1882

But we can, in fact, price anything. At any maturity.
Options on PE Funds: Pricing the real thing

Options on a leveraged buyout fund

- Price of a call and a put on the cash multiple (*i.e.* R/C_0) struck at 1.0 with maturity in $T = T_L = 10$ years (where the coefficient of risk aversion is $\gamma = 5$):
 - Call: 0.09 ± 0.0032
 - Put: 0.32 ± 0.0119

- Price of a call and a put on the carried interest struck at $K = 10$ with maturity in $T = T_L = 10$ years (where the coefficient of risk aversion is $\gamma = 5$):
 - Call: 0.44 ± 0.0183
 - Put: 10.27 ± 0.1882

- But we can, in fact, price anything. At any maturity.

<table>
<thead>
<tr>
<th>Qtr</th>
<th>D</th>
<th>R</th>
<th>V</th>
<th>NIC</th>
<th>MF</th>
<th>dNCF</th>
<th>IRR</th>
<th>CI</th>
<th>dTF</th>
<th>dMOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>86.60</td>
<td>198.06</td>
<td>0.00</td>
<td>0.00</td>
<td>13.10</td>
<td>25.14</td>
<td>0.28</td>
<td>19.61</td>
<td>0.02</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Thomas P. Harte (joint with Axel Buchner†) †University of Passau, Germany

Trading the Untradable
Options on a leveraged buyout fund

- Price of a call and a put on the cash multiple (i.e. R/C_0) struck at 1.0 with maturity in $T = T_L = 10$ years (where the coefficient of risk aversion is $\gamma = 5$):
 - Call: 0.09 ± 0.0032
 - Put: 0.32 ± 0.0119

- Price of a call and a put on the carried interest struck at $K = $10 with maturity in $T = T_L = 10$ years (where the coefficient of risk aversion is $\gamma = 5$):
 - Call: 0.44 ± 0.0183
 - Put: 10.27 ± 0.1882

But we can, in fact, price anything. At any maturity.

Options on PE Funds: Pricing the real thing

<table>
<thead>
<tr>
<th>Qtr</th>
<th>D</th>
<th>R</th>
<th>V</th>
<th>NIC</th>
<th>MF</th>
<th>dNCF</th>
<th>IRR</th>
<th>CI</th>
<th>dTF</th>
<th>dMOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>86.60</td>
<td>198.06</td>
<td>0.00</td>
<td>0.00</td>
<td>13.10</td>
<td>25.14</td>
<td>0.28</td>
<td>19.61</td>
<td>0.02</td>
<td>2.03</td>
</tr>
</tbody>
</table>
Options on a leveraged buyout fund

Price of a call and a put on the cash multiple (*i.e. R/C₀*) struck at 1.0 with maturity in **T = Tₓ = 10 years** (where the coefficient of risk aversion is **γ = 5**):

- Call: $0.09 (±$0.0032)
- Put: $0.32 (±$0.0119)

Price of a call and a put on the carried interest struck at **K = $10** with maturity in **T = Tₓ = 10 years** (where the coefficient of risk aversion is **γ = 5**):

- Call: $0.44 (±$0.0183)
- Put: $10.27 (±$0.1882)
Options on a leveraged buyout fund

<table>
<thead>
<tr>
<th>Qtr</th>
<th>D</th>
<th>R</th>
<th>V</th>
<th>NIC</th>
<th>MF</th>
<th>dNCF</th>
<th>IRR</th>
<th>CI</th>
<th>dTF</th>
<th>dMOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>86.60</td>
<td>198.06</td>
<td>0.00</td>
<td>0.00</td>
<td>13.10</td>
<td>25.14</td>
<td>0.28</td>
<td>19.61</td>
<td>0.02</td>
<td>2.03</td>
</tr>
</tbody>
</table>

- **Price of a call and a put on the cash multiple (i.e. \(R/C_0 \)) struck at 1.0 with maturity in \(T = T_L = 10 \) years (where the coefficient of risk aversion is \(\gamma = 5 \)):
 - Call: $0.09 (±$0.0032)
 - Put: $0.32 (±$0.0119)

- **Price of a call and a put on the carried interest struck at \(K = 10 \) with maturity in \(T = T_L = 10 \) years (where the coefficient of risk aversion is \(\gamma = 5 \)):
 - Call: $0.44 (±$0.0183)
 - Put: $10.27 (±$0.1882)

- But we can, in fact, price anything.
Options on PE Funds: Pricing the real thing

Options on a leveraged buyout fund

<table>
<thead>
<tr>
<th>Qtr</th>
<th>D</th>
<th>R</th>
<th>V</th>
<th>NIC</th>
<th>MF</th>
<th>dNCF</th>
<th>IRR</th>
<th>CI</th>
<th>dTF</th>
<th>dMOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>86.60</td>
<td>198.06</td>
<td>0.00</td>
<td>0.00</td>
<td>13.10</td>
<td>25.14</td>
<td>0.28</td>
<td>19.61</td>
<td>0.02</td>
<td>2.03</td>
</tr>
</tbody>
</table>

- Price of a call and a put on the cash multiple (i.e. R/C_0) struck at 1.0 with maturity in $T = T_L = 10$ years (where the coefficient of risk aversion is $\gamma = 5$):
 - Call: 0.09 (± 0.0032)
 - Put: 0.32 (± 0.0119)

- Price of a call and a put on the carried interest struck at $K = $10 with maturity in $T = T_L = 10$ years (where the coefficient of risk aversion is $\gamma = 5$):
 - Call: 0.44 (± 0.0183)
 - Put: 10.27 (± 0.1882)

- But we can, in fact, price anything. At any maturity.
Price a call and a put on a PE fund’s cash multiple

Figure: Using the Rubinstein model to estimate the value of a put (in black) and a call (in blue) on the cash multiple (i.e. the ratio of the cumulative returns R to the initial investment C_0: cash multiple $= R/C_0$) of the leveraged-buyout fund parameterized in Table 1.
Price a call and a put on a PE fund’s carried interest (compound option)

Figure: Using the Rubinstein model to estimate the value of a put (in black) and a call (in blue) on the carried interest of the leveraged-buyout fund parameterized in Table 1. This is a compound option, i.e. an option on an option, because the carried interest is itself an option (see Equation 25).
With the right tools we can price (just about) anything in the marketplace
Conclusion

- With the right tools we can price (just about) anything in the marketplace
- Can we put on this private-equity trade?
1 Disclaimer

2 Introduction

3 Options on PE Funds: The Black Scholes Way

4 Options on PE Funds: Incomplete Markets

5 Leveraged Buyout Fund Dynamics

6 Options on PE Funds: Pricing the real thing

7 Conclusions

8 References

